GEMS OF TCS

RANDOMNESS

Sasha Golovnev Novmeber 3, 2025

Deterministic Algorithms	Randomized Algorithms

· Undirected graph G, vertices V, edges E

- · Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition

- · Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$

- · Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$
- Cut $\delta(S) = \{(u, v) \in E : u \in S, v \in \overline{S}\}$

- · Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$
- Cut $\delta(S) = \{(u, v) \in E : u \in S, v \in \overline{S}\}$
- Max-CUT: $\max_{S\subseteq V} \delta(S)$

RANDOMIZED APPROXIMATION

• Pick independent uniform subsets $S_1, ..., S_k \subseteq V$ for $k = 100 \log n$

RANDOMIZED APPROXIMATION

• Pick independent uniform subsets $S_1, ..., S_k \subseteq V$ for $k = 100 \log n$

• Output the subset with maximum cut $\delta(S_i)$

RANDOMIZED APPROXIMATION

- Pick independent uniform subsets $S_1, ..., S_k \subseteq V$ for $k = 100 \log n$
- Output the subset with maximum cut $\delta(S_i)$
- Lecture 3: With probability $1 \frac{1}{10^{10}n}$, we cut at least |E|/2.04 edges

BPP

Definition

P—problems that can be solved in polynomial time

BPP

Definition

P—problems that can be solved in polynomial time

Definition

NP—problems whose solution can be verified in polynomial time

3PP

Definition

P—problems that can be solved in polynomial time

Definition

NP—problems whose solution can be verified in polynomial time

Definition

BPP—problems that can be solved in polynomial time using randomness with probability $\geq 2/3$

CLOUD SYNC

· Synchronize local files to the cloud

CLOUD SYNC

· Synchronize local files to the cloud

· Has file been changed? File length: *n* bits

RANDOMIZED ALGORITHM local file

1 0 0 1 1 0 1 1 0 0

1 0 0 1 1 1 1 1 0 0

local file

$$a \in \{0, \dots, 2^n - 1\}$$

			1	0	0	1	1	1	1	1	0	0
--	--	--	---	---	---	---	---	---	---	---	---	---

local file

$$a \in \{0, \dots, 2^n - 1\}$$

$$b \in \{0, \ldots, 2^n - 1\}$$

local file

$$a \in \{0,\ldots,2^n-1\}$$

$$\frac{\mathsf{prime}\ p}{\{2,3,\ldots,100n^2\log n\}}$$

Pick random

$$b \in \{0, \ldots, 2^n - 1\}$$

1	0	0	1	1	1	1	1	0	0
						ı			

local file

$$b \in \{0, \dots, 2^n - 1\}$$

1 0 0 1 1 1 1 1 0 0

local file

ANALYSIS

ANALYSIS

• If a = b, then for every p, $a = b \mod p$. We always output EQ!

ANALYSIS

• If a = b, then for every p, $a = b \mod p$. We always output EQ!

• Lecture 3: If $a \neq b$, then with probability $\approx 1 - \frac{1}{100n}$ we output NO!

RP

Definition

BPP—problems that can be solved in polynomial time using randomness with probability $\geq 2/3$

RP

Definition

BPP—problems that can be solved in polynomial time using randomness with probability $\geq 2/3$

Definition

RP—problems that can be solved in polynomial time using randomness s.t.

- If correct answer is 1, then algorithm outputs 1 w. p. $\geq 2/3$;
- If correct answer is 0, then algorithm outputs 0 always.

ERROR REDUCTION FOR RP

ERROR REDUCTION FOR BPP

CHERNOFF BOUND

LAS VEGAS ALGORITHMS

$\mathsf{BPP}\subseteq \mathsf{P}/_{\mathsf{POLY}}$