GEMS OF TCS

Public Key Cryptography II

Sasha Golovnev November 13, 2023

RSA

MODULAR ARITHMETIC

Easy Problems

- Addition, Subtraction, Multiplication
- GCD
- Modular Inverse
- Modular Exponentiation
- Primality Test

MODULAR ARITHMETIC

Easy Problems

- Addition, Subtraction, Multiplication
- GCD
- Modular Inverse
- Modular Exponentiation
- Primality Test

Hard Problems

- Factorization
- eth root: $x^{1/e}$

EULER'S THEOREM

Euler's Function

 \forall

$$\forall N \in \mathbb{N},$$

 $\phi(N) = \# \text{ of invertible els in } Z_N$
 $= |\{x: GCD(x, N) = 1\}|.$

EULER'S THEOREM

Euler's Function

$$\forall N \in \mathbb{N},$$

 $\phi(N) = \# \text{ of invertible els in } Z_N$
 $= |\{x: GCD(x, N) = 1\}|.$

Euler's Theorem

$$\forall N \in \mathbb{N}, \forall x \in Z_N^*,$$
$$x^{\phi(N)} = 1 \text{ in } Z_N.$$

PUBLIC KEY CRYPTOGRAPHY

Alice generates

• N = pq

Alice generates

- N = pq
- $e \cdot d = 1 \mod \phi(N)$

Alice generates

- N = pq
- $e \cdot d = 1 \mod \phi(N)$
- $\mathsf{pk} = (N, e)$

Alice generates

- N = pq
- $e \cdot d = 1 \mod \phi(N)$
- $\mathsf{pk} = (N, e)$
- sk = (N, d)

Alice generates

- N = pq
- $e \cdot d = 1 \mod \phi(N)$
- $\mathsf{pk} = (N, e)$
- sk = (N, d)

Encryption/Decryption

For a message $m \in \mathbb{Z}_N^*$: $c = \operatorname{Enc}(pk, m) = \operatorname{Enc}(N, e, m) = m^e \text{ in } Z_N^*$.

Alice generates

- N = pq
- $e \cdot d = 1 \mod \phi(N)$
- $\mathsf{pk} = (N, e)$
- sk = (N, d)

Encryption/Decryption

For a message $m \in \mathbb{Z}_N^*$: $c = \operatorname{Enc}(pk, m) = \operatorname{Enc}(N, e, m) = m^e \text{ in } Z_N^*$. For a ciphertext $c \in \mathbb{Z}_N^*$: $m = \operatorname{Dec}(sk, c) = \operatorname{Dec}(N, d, c) = c^d \text{ in } Z_N^*$.

FAST, CORRECT, SECURE

Ubiquitous RSA

- Online banking
- SSL/TLS
- Emails

• ...

• Secure file systems

Attacks on (bad implementations of) RSA

TEXTBOOK RSA IS NOT SECURE

Factoring and RSA

RSA WITH PRIME MODULUS

Small Difference

NOT ENOUGH RANDOMNESS

PKCS1

• Encryption must be randomized!

- Encryption must be randomized!
- RSA is powerful and ubiquitous

- Encryption must be randomized!
- RSA is powerful and ubiquitous
- Simple, but needs to be implemented correctly

- Encryption must be randomized!
- RSA is powerful and ubiquitous
- Simple, but needs to be implemented correctly
- There are many great implementations