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- Running time of an algorithm
- 100n? vs n?/10

+100n2 vs 27/100

- Complexity class P easy

- Complexity class NP-hard  harol
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EXAMPLE

Distance with full tank 300 mi.

Minimize the number of stops at gas stations
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- “Greedy” algorithm

+ Runs in linear time O(n), where n is the size of
the input (# of gas stations)

- Easy problem



Traveling Salesman Problem
(TSP)
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STATUS

- Classical optimization problem with
countless number of real life applications
(we'll see soon)

- No polynomial time algorithms known
- The best known algorithm runs in time 2"



DELIVERING GOODS

Need to visit several
points. What is the op-
timal order of visiting
them?
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PROCESSING COMPONENTS

There are n mechanical
components to
be processed on a complex
machine. After processing
the 1-th component, it takes y « i
nits of time to reconfigure the machine so
that it Is able to process the j-th component.
What Is the minimum processing cost?
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EUCLIDEAN TSP

- Euclidean TSP: Instead of a complete graph,
the Input consists of n points

p1= (X1,¥1), ..., Pn = (X, V¥n) ON the plane
- Weights are given implicitly:

d(pi,p;) = \/(Xi —X)2+ (Vi — V))?

- Weights are symmetric: d(p;, p;) = d(p;, pi)
- Welights satisfy the triangle inequality:

Ef pi-P)) < d(pi.pr) + d(pr. ) | P

’7:' P j




BRUTE FORCE SEARCH

- Finding the best permutation Is easy:
simply iterate through all of them and
select the best one
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BRUTE FORCE SEARCH

- Finding the best permutation Is easy:
simply iterate through all of them and
select the best one

- But the number of permutations
of n objects is@



nl: GROWTH RATE

n nl

5 120

8 40320
10 3628800

13 6227020800
20 24329020081/76640000
30 265252859812191058636308430000000
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Satisfiability Problem (SAT)
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SAT
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APPLICATIONS OF SAT

- Software Engineering

- Chip testing

- Circult design

- Automatic theorem provers

- Image analysis
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R-SAT
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Ix € {0,1}": p(x) = 1.
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R-SAT

O(X1, .., Xn) =(X1 VX V...V Xp) A
A
(Xz\/—IX3\/...\/X8)
¢ 1s satisfiable If
Ix € {0,1}": o(x) =1.
Otherwise, ¢ is unsatisfiable (~SAT
| 2-SAT
R-SAT I1s SAT where clause length <k 2-sAT

rateqe e



R-SAT. EXAMPLES

3-SAT
(X1 VX2 VX3) A (X7V X)) A (=X V X3) A (X2 V —X3)
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- Cook-Levin Theorem [Coo071, Lev73]: SAT can
model non-deterministic Turing machine:

SAT is NP-complete

- 3-SAT I1s NP-complete

- 2-SATIsIn P
)~ SAT 33w P
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The SAT game
http://bit.ly/sat-game



