GEMS OF TCS

HEURISTIC ALGORITHMS

Sasha Golovnev

February 25, 2021

Announ cements

- 1. Deadline HWZ today
- 2. Next Tuesday: Nitin Vaidya
- 3. Next Thursday: last lecture on Algs
- 4. 3rd HW will be posted next Thursday
- 5. After this: Complexity Crypto, Learning
- 6. Post-Quantum Crypto talk: Noah SD (Cornell), Mars, Ipm

 When exact algorithms are too slow, and approximate algorithm are not accurate enough

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms
- Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms
- Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient
- •1.Some heuristic algorithms are fast but not guaranteed to find optimal solutions

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms
- Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient
- Some heuristic algorithms are fast but not guaranteed to find optimal solutions
- Some heuristic algorithms find optimal solutions but not guaranteed to be fast

Traveling Salesman

TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

length: 9

 Going to the nearest unvisited node at every iteration?

- Going to the nearest unvisited node at every iteration?
- Efficient, works reasonably well in practice

- Going to the nearest unvisited node at every iteration?
- · Efficient, works reasonably well in practice
- For general graphs, may produce a cycle that is much worse than an optimal one

- Going to the nearest unvisited node at every iteration?
- · Efficient, works reasonably well in practice
- For general graphs, may produce a cycle that is much worse than an optimal one
- For <u>Euclidean</u> instances, the resulting cycle may be about log n times worse than an optimal one

 How to fool the nearest neighbors heuristic?

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

•

•

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

 $OPT \approx 26.42$

 $NN \approx 28.33$

Another Heuristic

· s ← some initial solution – any cycle that
vigits each venter
exactly on ←
1 → 2 → 3 → - - → h

- $s \leftarrow$ some initial solution
- while it is possible to change 2 edges in s to get a better cycle s':

- $s \leftarrow$ some initial solution
- while it is possible to change 2 edges in s to get a better cycle s':
 - $s \leftarrow s'$

- $s \leftarrow$ some initial solution
- while it is possible to change 2 edges in s to get a better cycle s':
 - $S \leftarrow S'$
- return s

EXAMPLE

Changing two edges in a suboptimal solution:

EXAMPLE

Changing two edges in a suboptimal solution:

EXAMPLE

Changing two edges in a suboptimal solution:

Changing two edges in a suboptimal solution:

A suboptimal solution that cannot be improved by changing two edges:

A suboptimal solution that cannot be improved by changing two edges:

Need to allow changing three edges to improve this solution

LOCAL SEARCH

Local Search with parameter d:

- $s \leftarrow$ some initial solution
- while it is possible to change d edges in s to get a better cycle s':
 - $s \leftarrow s'$
- return s

PROPERTIES

 Computes a local optimum instead of a global optimum

PROPERTIES

- Computes a local optimum instead of a global optimum
- The larger <u>d</u>, the better the resulting solution and the higher is the running time

d=2 pains of edges
$$O(n^2)$$
d=10 10-tuples of edges $O(n^{10})$

PERFORMANCE

 Trade-off between quality and running time of a single iteration

PERFORMANCE

- Trade-off between quality and running time of a single iteration
- Still, the number of iterations may be exponential and the quality of the found cycle may be poor

PERFORMANCE

- Trade-off between quality and running time of a single iteration
- Still, the number of iterations may be exponential and the quality of the found cycle may be poor
- But works well in practice

doesn't always pun fast doesn't always neturn opt solution

Satisfiability

SAT

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)$$

SAT

[.
$$x_1 \sim x_2 \sim x_3 = 1$$
]
 $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)$

2. UNSAT
$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$$

Weive seen exp-time algs Weill haunistic algs

BACKTRACKING

2"- trivial algs

Construct a solution piece by piece

BACKTRACKING

- Construct a solution piece by piece
- Backtrack if the current partial solution cannot be extended to a valid solution

Backtraching

EXAMPLE

 $(x_1 \lor x_2 \lor x_3 \lor x_4)(\neg x_1)(x_1 \lor x_2 \lor \neg x_3)(x_1 \lor \neg x_2)(x_2 \lor \neg x_4)$

$$(x_{1} \lor x_{2} \lor x_{3} \lor x_{4})(\neg x_{1})(x_{1} \lor x_{2} \lor \neg x_{3})(x_{1} \lor \neg x_{2})(x_{2} \lor \neg x_{4})$$

$$x_{1} = 0$$

$$(x_{1} \lor x_{3} \lor x_{4})(x_{1} \lor \neg x_{3})(\neg x_{2})(x_{2} \lor \neg x_{4})$$

$$x_{2} = 0$$

$$(x_{3} \lor x_{4})(\neg x_{3})(\neg x_{4})$$

unsatisfied clause with no vars

- SolveSAT(F):
 - if F has no clauses: return "sat"
 - if F contains an empty clause: return "unsat"

- SolveSAT(F):
 - if F has no clauses: return "sat"
 - if F contains an empty clause: return "unsat"
 - $x \leftarrow$ unassigned variable of F

- SolveSAT(F):
 - if F has no clauses: return "sat"
 - if F contains an empty clause: return "unsat"
 - $x \leftarrow$ unassigned variable of F
 - if SolveSAT($F[x \leftarrow 0]$) = "sat": return "sat"

- SolveSAT(F):
 - if F has no clauses: return "sat"
 - if F contains an empty clause: return "unsat"
 - $x \leftarrow$ unassigned variable of F
 - if SolveSAT($F[x \leftarrow 0]$) = "sat":

return "sat"

• if SolveSAT($F[x \leftarrow 1]$) = "sat":

return "sat"

there are no solutions => fla is UNSAT

- SolveSAT(F):
 - if F has no clauses: return "sat"
 - if F contains an empty clause: return "unsat"
 - $x \leftarrow$ unassigned variable of F
 - if SolveSAT($F[x \leftarrow 0]$) = "sat":
 - return "sat"
 - if SolveSAT($F[x \leftarrow 1]$) = "sat": return "sat"
 - return "unsat"

BACKTRACKING

• Thus, instead of considering all 2ⁿ branches of the recursion tree, we track carefully each branch

BACKTRACKING

- Thus, instead of considering all 2ⁿ
 branches of the recursion tree, we track carefully each branch
- When we realize that a branch is dead (cannot be extended to a solution), we immediately cut it

SAT SOLVERS

 Backtracking is used in many state-of-the-art SAT-solvers

SAT SOLVERS

- Backtracking is used in many state-of-the-art SAT-solvers
- SAT-solvers use tricky heuristics to choose a variable to branch on, simplify a formula before branching, and use efficient data structures

Example: choose a van that appears more often
Example:
$$x=0$$
 or $x=1$ first? $x \times x \times x$
Simplify: $(x, \sqrt{x_2})(x_3)(x_4 \sqrt{x_4}) = 1$ 1 0

SAT SOLVERS

- Backtracking is used in many state-of-the-art SAT-solvers
- SAT-solvers use tricky heuristics to choose a variable to branch on, simplify a formula before branching, and use efficient data structures
- Another commonly used technique is local (x1 V x2 V x3) - this claused is cuaneutly unsat

 Change value of our of these vans

 SAT search

Applications

THE ART OF COMPUTER PROGRAMMING

THE ART OF COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 6A

A DRAFT OF SECTION 7.2.2.2: SATISFIABILITY

DONALD E. KNUTH Stanford University

THE ART OF COMPUTER PROGRAMMING

Wow! — Section 7.2.2.2 has turned out to be the longest section, by far, in <u>The Art of Computer Programming</u>. The SAT problem is evidently a "killer app," because it is key to the solution of so many problems. Consequently I can only hope that my lengthy treatment does not also kill off my faithful readers!

Donald Knuth

SAT HANDBOOK

CONFERENCE, COMPETITION, JOURNAL

Annual SAT Conference (since 1996):
 http://satisfiability.org

CONFERENCE, COMPETITION, JOURNAL

- Annual SAT Conferense (since 1996):
 http://satisfiability.org
- Annual SAT Solving competitions (since 2002):

 http://www.satcompetition.org/

CONFERENCE, COMPETITION, JOURNAL

- Annual SAT Conferense (since 1996):
 http://satisfiability.org
- Annual SAT Solving competitions (since 2002):
 - http://www.satcompetition.org/
- Journal on Satisfiability, Boolean Modeling and Computation:
 - http://jsatjournal.org/

MATH PROOFS

Two-hundred-terabyte maths proof is largest ever

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016

MATH PROOFS

Physics

Mathematics

Biology

Computer Science All Articles

GEOMETRY

Computer Search Settles 90-Year-Old Math Problem

By translating Keller's conjecture into a computerfriendly search for a type of graph, researchers have finally resolved a problem about covering spaces with tiles.

SAT SOLVERS

python wnapper for SAT Solver picosat

```
from pycosat import solve

clauses = \begin{bmatrix} [-1, -2, -3], [1, -2], [2, -3], [3, -1], [1, 2, 3] \end{bmatrix}

print(solve(clauses))

print(solve(clauses[1:]))

prython syntox for all clauses except ist one
```

SAT SOLVERS

```
from pycosat import solve
clauses = [[-1, -2, -3], [1, -2], [2, -3], [3,
-1], [1, 2, 3]]
print(solve(clauses))
print(solve(clauses[1:]))
UNSAT
[1, 2, 3] > x,=1 xe=1 x3=1
```

[-1,2,-3] -> x,=0 x2=1 x3=0

N QUEENS

Is it possible to place n queens on an $n \times n$ board such that no two of them attack each other?

EXAMPLES

EXAMPLES

Classical solution: way to lange Brute fonce : even n=8 Backtnaching: place 1st aneen n 220 1 2 3 4 5 6 7

Encode/Reduce to SAT use SAT-solvers

• n^2 <u>0/1-variab</u>les: for $0 \le i, j < n, x_{ij} = 1$ iff queen is placed into cell (i, j)

- n^2 0/1-variables: for $0 \le i, j < n, x_{ij} = 1$ iff queen is placed into cell (i, j)
- For $0 \le i < n$, ith row contains ≥ 1 queen:

$$(x_{i1} = 1 \text{ or } x_{i2} = 1 \text{ or } \dots \text{ or } x_{i(n-1)} = 1).$$

$$(x_{i0} \lor x_{i1} \lor x_{i2} \lor \dots \lor x_{i,n-1})$$

$$(x_{i0} \lor x_{i1} \lor x_{i2} \lor \dots \lor x_{i,n-1})$$

$$(x_{20} \lor x_{21} \lor \dots - \dots \lor x_{i,n-1})$$

- n^2 0/1-variables: for $0 \le i, j < n, x_{ij} = 1$ iff queen is placed into cell (i, j)
- For $0 \le i < n$, ith row contains ≥ 1 queen: $(x_{i1} = 1 \text{ or } x_{i2} = 1 \text{ or } \dots \text{ or } x_{i(n-1)} = 1)$.
- For $0 \le i < n$, ith row contains ≤ 1 queen: $\forall 0 \le j_1 \ne j_2 < n$: $(x_{ij_1} = 0 \text{ or } x_{ij_2} = 0)$.

- n^2 0/1-variables: for $0 \le i, j < n, x_{ij} = 1$ iff queen is placed into cell (i, j)
- For $0 \le i < n$, ith row contains ≥ 1 queen: $(x_{i1} = 1 \text{ or } x_{i2} = 1 \text{ or } \dots \text{ or } x_{i(n-1)} = 1)$.
- For $0 \le i < n$, ith row contains ≤ 1 queen: $\forall 0 \le j_1 \ne j_2 < n$: $(x_{ij_1} = 0 \text{ or } x_{ij_2} = 0)$.
- For $0 \le j < n$, jth column contains ≤ 1 queen: $\forall 0 \le i_1 \ne i_2 < n$: $(x_{i_1j} = 0 \text{ or } x_{i_2j} = 0)$.

- n^2 0/1-variables: for $0 \le i, j < n, x_{ij} = 1$ iff queen is placed into cell (i, j)
- For $0 \le i < n$, *i*th row contains ≥ 1 queen: $(x_{i1} = 1 \text{ or } x_{i2} = 1 \text{ or } \dots \text{ or } x_{i(n-1)} = 1)$.
- For $0 \le i < n$, ith row contains ≤ 1 queen: $\forall 0 \le j_1 \ne j_2 < n$: $(x_{ij_1} = 0 \text{ or } x_{ij_2} = 0)$.
- For $0 \le j < n$, jth column contains ≤ 1 queen: $\forall 0 \le i_1 \ne i_2 < n$: $(x_{i_1j} = 0 \text{ or } x_{i_2j} = 0)$.
- For each pair (i_1, j_1) , (i_2, j_2) on diagonal:

$$(x_{i_1j_1}=0 \text{ or } x_{i_2j_2}=0).$$

Descriptive programming

```
from itertools import combinations, product
                                                              n=100
from pycosat import solve
n = 10
clauses = []
# converts a pair of integers into a unique integer
def varnum(i, j):
    assert i in range(n) and j in range(n)
    return i * n + j + 1
# each row contains at least one queen
for i in range(n):
    clauses.append([varnum(i, j) for j in range(n)])
# each row contains at most one queen
for i in range(n):
    for j1, j2 in combinations(range(n), 2):
        clauses append([-varnum(i, j1), -varnum(i, j2)])
# each column contains at most one queen
for j in range(n):
   for i1, i2 in combinations(range(n), 2):
        clauses append([-varnum(i1, j), -varnum(i2, j)])
# no two queens stay on the same diagonal
for i1, j1, i2, j2 in product(range(n), repeat=4):
    if i1 == i2:
        continue
    if abs(i1 - i2) == abs(j1 - j2):
        clauses append([-varnum(i1, j1),
                        -varnum(i2, j2)])
assignment = solve(clauses)
for i, j in product(range(n), repeat=2):
    if assignment[varnum(i, j) - 1] > 0:
        print(j, end=' ')
```