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HEURISTIC ALGORITHMS

- When exact algorithms are too slow, and
appro>'<-i'r-n_ate algorithm are not accurate
enough

- We can use heuristic algorithms

- Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

- Some heuristic algorithms are fast but not
guaranteed to find optimal solutions

-1Some heuristic algorithms find optimal
solutions but not guaranteed to be fast
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Traveling Salesman



TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once
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TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

length: 9
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NEAREST NEIGHBORS

- Going to the nearest unvisited node at
every Iteration?

- Efficient, works reasonably well in practice

- For general graphs, may produce a cycle
that is much worse than an optimal one

- For Euclidean instances, the resulting cycle

may be about log n times worse than an
optimal one
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NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors
heuristic?

- Assume that the weights of almost all the
edges In the graph are equal to 2

- And we start to construct a cycle:

OPT <10

NN =103
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OPT ~ 26.42
NN ~ 28.33
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- S < some Initial solution
- while 1t Is possible to change 2 edges In s
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- s < some Initial solution

- while 1t Is possible to change 2 edges In s
to get a better cycle s":

© S+ ¢

- return s
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EXAMPLE

A suboptimal solution that cannot be improved
by changing two edges:
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EXAMPLE

A suboptimal solution that cannot be improved
by changing two edges:

o o

o O O O
A4 A4

Need to allow changing three edges to improve
this solution



LOCAL SEARCH

£2,%% 10
Local Search with parameter d:
+ S <= some Initial solution

- while it Is possible to change d edges in s
to get a better cycle s

- S« ¢
- return s



PROPERTIES

- Computes a local optimum instead of a
global optimum



PROPERTIES

- Computes a local optimum instead of a
global optimum

- The larger__g, the better the resulting
solution and the higher is the running time

d=2 pains J:&ﬁu;' O(hz)
d210 10 -~ Feples of edpes 0(”'0)
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PERFORMANCE

- Trade-off between quality and running
time of a single iteration

- Still, the number of iterations may be

exponential and the quality of the found
cycle may be poor

- But works well in practice
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Satisfiability
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SAT

. K,';Vz."*}‘c)
(X1 VX2 VX3) A (X1 V=X2) A (=X V X3) A (X2 V —X3)

2. UVSAT
(X1 VX2 VX3) A (X V=) A (X VX3) A (X2 V—X3) A (=X V=X VX))

Wetwve Seesn 24 ~ i qu;‘
Well  heunighe ale §
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BACKTRACKING

- Construct a solution piece by piece

- Backtrack If the current partial solution
cannot be extended to a valid solution
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EXAMPLE

X1 =20

(X1 V X2 V X3 \/Xq)(—lX1)(X1 V Xy V —|X3)(X1 V —|X2)(X2 V —|X4)

(X2 V X3V X4)(X2 Vv —|X3)(—IX2)(X2 V —|X4)

X =20

(X3 V X4 ) (—x3)(—X4)

(X4 )(—X4)

\f:“

O(=x)

X_j X&:q

() 0

Xy =1

9)

X1 =1

(X2 V =xy)
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BACKTRACKING ALGORITHM

+ SolveSAT(F):
- If F has no clauses:
return “sat”
- If F contains an empty clause:
return “unsat”
- X < unassigned variable of F
- f So_l7veSAT(F[x < 0]) = “sat”:
f o slllon, TETUTN “sat”
?fo (__If SolveSAT(F[x < 1]) = "sat™

on return “sat”
ezl +low -

-’—’L)M ane w) qo[u‘/h)"-s =2 }'q

;s UNSAT



BACKTRACKING ALGORITHM

Z.‘ -,ln.'v.'ol‘v}
- SolveSAT(F): :ew‘
- If F has no clauses: ”i?’ sl
return “sat” 4
- If F contains an empty clau(;e/:& \> Y
return “unsat”
- X < unassigned variable of F p
- if SolveSAT(F[x « 0]) = “sat”: c::“"'wj
u ” S' 9"‘1—(
| return “sat - Brere gtong
+ 1f SolveSAT(F[x < 1]) = “sat”: of fess Lieq
return “sat”

- return “unsat”
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BACKTRACKING

- Thus, instead of considering all 2"
branches of the recursion tree, we track
carefully each branch



BACKTRACKING

- Thus, instead of considering all 2"
branches of the recursion tree, we track
carefully each branch

- When we realize that a branch Is dead
(cannot be extended to a solution),
we Immediately cut it
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SAT SOLVERS

- Backtracking is used in many
state-of-the-art SAT-solvers

- SAT-solvers use tricky heuristics to choose
a variable to branch on, simplify a formula
before branching, and use efficient dzita

structures
5‘*«-—,,&; Cloogs @ ved {lat appeanrs voue of feq

=20 o xc\ }}KQLZ X b 4 X 7
* 1 1 0

Exa-«?(l;
g:m?I.'j-‘j 2 (v, \f)?g) (?‘5) (7'« V?Q) 1
Xy ¢ 1



SAT SOLVERS

- Backtracking is used in many
state-of-the-art SAT-solvers

- SAT-solvers use tricky heuristics to choose
a variable to branch on, simplify a formula
before branching, and use efficient data
structures

- Another commonly used technique is local
search (x' V %g v),3> s clowcalf is

c«umdl3 wnsasf
X0 %2l %329 )
Cln.awy. varlee of oce of Hugy vang SAT
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THE ART OF COMPUTER PROGRAMMING

THE ART OF
COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 6A

A DRAFT OF
SECTION 7.2.2.2:
SATISFIABILITY

DONALD E. KNUTH Stanford University



THE ART OF COMPUTER PROGRAMMING

Wow! — Section 7.2.2.2 has turned out to be the
longest section, by far, in The Art of Computer
Programming. The SAT problem is evidently a “killer
app,” because it is key to the solution of so many
problems. Consequently | can only hope that my

lengthy treatment does not also kill off my faithful
readers!

Donald Knuth




SAT HANDBOOK

HANDBOOK

o: of satisfiability

0000 Eitoss 0O
®O®® ArnminBiere L3
©® ® @ Marijn Heule [ ]
@® Hans van Maaren [ )
® ® @® TobyWalsh
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CONFERENCE, COMPETITION, JOURNAL

- Annual SAT Conferenege (since 1996):
http://satisfiability.org
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CONFERENCE, COMPETITION, JOURNAL

- Annual SAT Conferense (since 1996):
http://satisfiability.org

- Annual SAT Solving competitions (since
2002):
http://www.satcompetition.org/

- Journal on Satisfiability, Boolean Modeling
and Computation:
http://jsatjournal.org/



MATH PROOFS

nature International weekly journal of science

Home | News & Comment | Research | Careers & Jobs ‘ Current Issue | Archive | Audio & Video | For

Volume 534 Issue 7605 m

< e
Two-hundred-terabyte maths proof is largest ever

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016

) por | W, Rights & Permissions




MATH PROOFS

Computer All

“CZ-Quantamacazine Physics Mathematics  Biology Science Articles

GEOMETRY

Computer Search Settles 90-
y Year-Old Math Problem
1 d=2 -Jtm ;,c&

@ By translating Keller’s conjecture into a computer-

friendly search for a type of graph, researchers have

]-4' finally resolved a problem about covering spaces with

tiles.



SAT SOLVERS

a'co$0lil
P?‘f-koﬂ w nax pren .):'"‘ SAT Sol van P

from pycosat import solve
——

clauses = [ [-1, -2, -3] ,m, [2, -3], [3,

_1]1 [1) 2) 3] ] qu’vqxzv-qx}>’ (X'quz.) —

,73#‘1-0-4 "’u‘ﬂ‘* }’“ o/l
C lareges exa/){ Is] ot

print(solve(clauses))
print(solve(clauses[lﬁ ))



SAT SOLVERS

from pycosat import solve

clauses = [ [-1, -2, -31, [1, -21, [2, -3], [3,
-11, [1, 2, 31 1]

rint(solve(clauses))
print(solve(clauses[1:]))

NSAT
[1, 2, 3] —> 3,20 sl Xq =)

l-:.'o 2)'3] D %,20 »=l| >r3‘=0



N QUEENS

Is 1t possible to place n queens on an n x n
board such that no two of them attack each
other?



EXAMPLES

;;;;;;;

AAAAAAA

AAAAAAA

;;;;;;;

;;;;;

AAAAAA

01234567 891011



EXAMPLES

C l‘”t'ql gp[u".‘w s )
Brute ;vr-u- T VI n=g
Back-’-lutclu'«-s : P(qu. st Queen

(c;l wouy duo laupe

! mn X

2
5 @%x
* 2
3 QD%
2 D ¢
1 W 5
0E X
01234567

guwa,e/p_ejqu Jo YAT
use gAT"?-o[vﬁns



ENCODING AS SAT

- n*0/1-variables: for 0 <i,j < n, xjj = 1iff
queen is placed into cell (i,j)




ENCODING AS SAT

- n* 0/1-variables: for 0 <i,j < n, xjj = 1iff
queen is placed into cell (1)) n queeus 0@

Nxn boawo

- For 0 <1 < n, ith row contains > 1 queen:

(XH = or Xjp = Tor ... OrX,'(n_1) — 1) .
éx,,v oy V X0z n - — ' Wayun

YoV ¥ VRVl VX /, o==’ |

(XeoV %4 v~ ).




ENCODING AS SAT

- n*0/1-variables: for 0 <i,j < n, xjj = 1iff
queen is placed into cell (1,))
- For 0 <1 < n, ith row contains > 1 queen:

(Xn =Torxp="10r ... or Xjn_1) = 1).
- For 0 </ < n, ith row contains < 1 queen:

V0 <j.1#j2<ﬂ' (Xij1206_rj(ij220).

99 m— Y

Q(": -0 og 5(,“,_0) The wtin. |G

\/
('—l Xoo O X"J")




ENCODING AS SAT

- n*0/1-variables: for 0 <i,j < n, xjj = 1iff
queen is placed into cell (1,))

- For 0 <1 < n, ith row contains > 1 queen:
(Xn=T1o0rxp=710r ... or Xjpn_1) = 1).

+ For 0 <1 < n, ith row contains < 1 queen:

VO <j1#Jo<n: (xj, =0o0rx; =0).

- For 0 < < n, jth column contains < 1 queen:

—

\V/OSH 7£I'2<ﬂ2 (X,'”':OOFX,'zj':O).

-
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ENCODING AS SAT

- n*0/1-variables: for 0 <i,j < n, xjj = 1iff
queen is placed into cell (1,))
- For 0 <1 < n, ith row contains > 1 queen:

(Xn =Torxp="10r ... or Xjn_1) = 1).
- For 0 </ < n, ith row contains < 1 queen:
VO <j1#Jo<n: (xj, =00rx; =0).
- For 0 < < n, jth column contains < 1 queen:
VO<ih#Ih<n: (X;;=00rx,;=0).

— —

- For each pair (I, 1), (I2,J2) on diagonal:
(Xi1j1 = 0 or X,'zj2 — O). Q/D




from pycosat import solve y) :'_ '.00

n = 10
clauses = []

# converts a pair of integers into a unique integer
def varnum(i, j):

assert i in range(n) and j in range(n)

return i * n + j + 1

# each row contains at least one queen

for i in range(n):
"’:::> clauses.append([varnum(i, j) for j in range(n)])

# each row contains at most one queen
for i in range(n):

.a for j1, j2 in combinations(range(n), 2):
clauses.append([-varnum(i, j1), -varnum(i, j2)])

# each column contains at most one queen
for j in range(n):
am— for i1, i2 in combinations(range(n), 2):
clauses.append([-varnum(il, j), -varnum(i2, j)])

# no two queens stay on the same diagonal
for i1, j1, i2, j2 in product(range(n), repeat=4):

if i1 == i2:
continue
if abs(il - i2) == abs(jl - j2):

clauses.append([-varnum(il, j1),
-varnum(i2, j2)])

assignment = solve(clauses)
for i, j in product(range(n), repeat=2):
if assignment[varnum(i, j) - 1] > @:
print(j, end=' ')



