Distributed Computing

Nitin Vaidya

Distributed computing in Nature

What is distributed computing?

A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable.

Leslie Lamport

What is distributed computing?

Parallel computing versus distributed computing

Example:

To add N numbers where N very large use 4 processors, each adding up N/4, then add the 4 partial sums

Parallel or distributed ?

What is distributed computing?

- Parallel computing versus distributed computing
- Role of uncertainty in distributed systems
- Clock drift
- Network delays
- Network losses
- Asynchrony
- Failures

Clocks

- Notion of time very useful in real life, and so it is in distributed systems
- Example ...

Submit programming assignment by e-mail by 11:59 pm Monday

Clocks

- Notion of time very useful in real life, and so it is in distributed systems
- Example ...

Submit programming assignment by e-mail by 11:59 pm Monday

By which clock ?

Clocks

- Notion of time very useful in real life, and so it is in distributed systems
- Example ...

Submit programming assignment by e-mail by 11:59 pm Monday

If it reaches at 12:01, how do we know it was sent by 11:59 pm?

How to synchronize clocks?

How to synchronize clocks?

Role of delay uncertainty

Ordering of Events

- If we can't have "perfectly" synchronized clocks, can we still accurately determine what happened first?

Distribute Storage

How to improve system availability?

- Potentially large network delays ... network partition
- Failures

Replication is a common approach

- If data stored only in one place, far away user will incur significant access delay
\rightarrow Store data in multiple replicas,
Clients prefer to access "closest" replica

Replicated Storage

- How to keep replicas "consistent" ?
- What does "consistent" really mean?

Consistency Model

- Since shared memory may be accessed by different processes concurrently, we need to define how the updates are observed by the processes
- Consistency model captures these requirements

Consistency \#1

Alice: My cat was hit by a car.
Alice: But luckily she is fine.
Bob: That's great!
What should Calvin observe?

Consistency \#1

Alice: My cat was hit by a car.
Alice: But luckily she is fine.
Bob: That's great!
What should Calvin observe?

Consistency \#2

Alice: My cat was hit by a car.
Alice: But luckily she is fine. Bob: That's terrible!

What should Calvin observe?

Agreement

- Where to meet for dinner?

Agreement with Failure

- Non-faulty nodes must agree

Agreement with Crash Failure \& Asynchrony

What if nodes misbehave?

- Crash failures are benign
- Other extreme ... Byzantine failures
"Local" Algorithms

Consensus

- Each node has an input (scalar or vector)

Consensus

- Each node has an input (scalar or vector)

■ Consensus: Output in convex hull of the inputs

Consensus

Consensus

Initially, state = input

Consensus

Consensus

As time $\rightarrow \infty$, values become identical

Average Consensus

- Each node has an input (scalar or vector)
- Average consensus: Output = average of inputs

Average Consensus

Average Consensus
 Change of Weights

Average Consensus

Average Consensus

As time $\rightarrow \infty$, values converge to average of inputs

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right):=\frac{\left(\begin{array}{ccc}
3 / 4 & 0 & 1 / 4 \\
0 & 3 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)}{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)}=\mathrm{M}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

after 2 iterations after 1 iteration

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right):=\mathrm{M}\left[\mathrm{M}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right]=\mathrm{M}^{2}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

after k iterations

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right):=\mathrm{M}^{\mathrm{k}}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Connected Undirected Graphs

■ Consensus if M row stochastic
after k iterations
$\left(\begin{array}{l}a \\ b \\ c\end{array}\right):=\mathrm{M}^{\mathrm{k}}\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$

- Matrix elements in $[0,1]$
- $M_{i j}$ non-zero if link (i,j) exists
- Each row adds to 1

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right):=\mathrm{M}^{\mathrm{k}}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
p & q & r \\
p & q & r \\
p & q & r
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Row
stochastic M
b
$b=3 b / 4+c / 4$
$a=3 a / 4+c / 4$

Row

stochastic M

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right):=\mathrm{M}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Due to stochastic rows, each new state in convex hull of old states

Connected Undirected Graphs

after k iterations

$\left(\begin{array}{l}a \\ b \\ c\end{array}\right):=\mathrm{M}^{\mathrm{k}}\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$

- Average consensus
if M doubly stochastic
- Matrix elements in $[0,1]$
- $M_{i j}$ non-zero if link (i,j) exists
- Each row \& each column adds to 1

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right):=\left(\begin{array}{ccc}
3 / 4 & 0 & 1 / 4 \\
0 & 3 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=M\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Due to stochastic rows,
each new state in convex hull of old states

Due to stochastic columns, total "mass"
(sum of states) is preserved

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right):=\mathrm{M}^{\mathrm{k}}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Doubly stochastic M

$b=3 b / 4+c / 4$
$a=3 a / 4+c / 4$

Consensus

Average Consensus

Optimization

 $\operatorname{argmin} \sum f_{i}(x)$

Distributed Optimization

$$
f(x)=\sum f_{i}(x)
$$

- Each agent maintains an estimate
- Local estimates shared with neighbors \& updated
- Estimates converge to optimum

Example based on [Nedic and Ozdaglar, 2009]

$$
x_{1} \leftarrow \frac{2}{3} x_{1}+\frac{1}{3} x_{3}-\alpha \nabla f_{1}\left(x_{1}\right)
$$

$$
\begin{aligned}
& x_{1} \leftarrow \frac{2}{3} x_{1}+\frac{1}{3} x_{3}-\alpha \nabla f_{1}\left(x_{1}\right) \\
& x_{3} \leftarrow \frac{1}{3} x_{1}+\frac{1}{3} x_{2}+\frac{1}{3} x_{3}-\alpha \nabla f_{3}\left(x_{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
x_{1}[t+1] \leftarrow \frac{2}{3} x_{1}[t]+\frac{1}{3} x_{3}[t]-\alpha \nabla f_{1}\left(x_{1}[t]\right) \\
x_{3}[t+1] \leftarrow \frac{1}{3} x_{1}[t]+\frac{1}{3} x_{2}[t]+\frac{1}{3} x_{3}[t]-\alpha \nabla f_{3}\left(x_{3}[t]\right)
\end{gathered}
$$

Distributed Optimization

As time $\rightarrow \infty$

■ Consensus: All agents converge to same estimate

- Optimality

$$
\operatorname{argmin} \sum f_{i}(x)
$$

$$
\begin{aligned}
& x_{1} \leftarrow \frac{2}{3} x_{1}+\frac{1}{3} x_{3}-\alpha \nabla f_{1}\left(x_{1}\right) \\
& x_{3} \leftarrow \frac{1}{3} x_{1}+\frac{1}{3} x_{2}+\frac{1}{3} x_{3}-\alpha \nabla f_{3}\left(x_{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
x_{1}[t+1] \leftarrow \frac{2}{3} x_{1}[t]+\frac{1}{3} x_{3}[t]-\alpha \nabla f_{1}\left(x_{1}[t]\right) \\
x_{3}[t+1] \leftarrow \frac{1}{3} x_{1}[t]+\frac{1}{3} x_{2}[t]+\frac{1}{3} x_{3}[t]-\alpha \nabla f_{3}\left(x_{3}[t]\right)
\end{gathered}
$$

$$
\left[\begin{array}{l}
x_{3}[t] \\
x_{3}[t] \\
x_{3}[t]
\end{array}\right] \quad\left[\begin{array}{l}
f_{1}\left(x_{1}[t]\right) \\
f_{2}\left(x_{2}[t]\right) \\
f_{3}\left(x_{3}[t]\right)
\end{array}\right]
$$

$$
x[t+1] \longleftarrow M x[t]-\alpha_{t} \nabla f(x[t])
$$

$$
\begin{gathered}
x_{1}[t+1] \leftarrow \frac{2}{3} x_{1}[t]+\frac{1}{3} x_{3}[t]-\alpha_{t} \nabla f_{1}\left(x_{1}[t]\right) \\
x_{3}[t+1] \leftarrow \frac{1}{3} x_{1}[t]+\frac{1}{3} x_{2}[t]+\frac{1}{3} x_{3}[t]-\alpha_{t} \nabla f_{3}\left(x_{3}[t]\right) \\
x[t+1] \leftarrow \operatorname{Mx[t]-\alpha _{t}\nabla f(x[t])} \begin{array}{c}
\text { Doubly } \\
\text { stochastic }
\end{array}
\end{gathered}
$$

$x[t+1] \leftarrow M x[t]-\alpha_{t} \nabla f(x[t])$

$x[t+1] \leftarrow M x[t]-\alpha_{t} \nabla f(x[t])$

$x[1] \leftarrow M x[0]-\alpha_{0} \nabla f(x[0])$

$x[t+1] \leftarrow M x[t]-\alpha_{t} \nabla f(x[t])$

$x[1] \leftarrow M x[0]-\alpha_{0} \nabla f(x[0])$
$x[2] \leftarrow M x[1]-\alpha_{1} \nabla f(x[1])$

$x[t+1] \leftarrow M x[t]-\alpha_{t} \nabla f(x[t])$

$x[1] \leftarrow M x[0]-\alpha_{0} \nabla f(x[0])$
$x[2] \leftarrow M x[1]-\alpha_{1} \nabla f(x[1])$

$$
=M^{2} x[0]-\alpha_{0} M \nabla f(x[0])-\alpha_{1} \nabla f(x[1])
$$

$x[t+1] \leftarrow M x[t]-\alpha_{t} \nabla f(x[t])$

$x[1] \leftarrow M x[0]-\alpha_{0} \nabla f(x[0])$
$x[2] \leftarrow M x[1]-\alpha_{1} \nabla f(x[1])$

$$
=M^{2} x[0]-\alpha_{0} M \nabla f(x[0])-\alpha_{1} \nabla f(x[1])
$$

$x[3] \leftarrow M x[2]-\alpha_{2} \nabla f(x[2])$

$x[t+1] \leftarrow M x[t]-\alpha_{t} \nabla f(x[t])$

$x[1] \leftarrow M x[0]-\alpha_{0} \nabla f(x[0])$
$x[2] \leftarrow M x[1]-\alpha_{1} \nabla f(x[1])$

$$
=M^{2} x[0]-\alpha_{0} M \nabla f(x[0])-\alpha_{1} \nabla f(x[1])
$$

$x[3] \leftarrow M x[2]-\alpha_{2} \nabla f(x[2])$
$=M^{3} x[0]$
$-\alpha_{0} M^{2} \nabla f(x[0])-\alpha_{1} M \nabla f(x[1])-\alpha_{2} \nabla f(x[2])$

$x[t+1] \leftarrow M x[t]-\alpha_{t} \nabla f(x[t])$

$x[1] \leftarrow M x[0]-\alpha_{0} \nabla f(x[0])$
$x[2] \leftarrow M x[1]-\alpha_{1} \nabla f(x[1])$

$$
=M^{2} x[0]-\alpha_{0} M \nabla f(x[0])-\alpha_{1} \nabla f(x[1])
$$

$x[3] \leftarrow M x[2]-\alpha_{2} \nabla f(x[2])$
$=M^{3} x[0]$

$$
-\alpha_{0} M^{2} \nabla f(x[0])-\alpha_{1} M \nabla f(x[1])-\alpha_{2} \nabla f(x[2])
$$

Claims

- Estimates at different nodes converge $\boldsymbol{\rightarrow}$ Consensus
- The estimates converges to argmin $\sum f_{i}(x)$

