Distributed Computing

Nitin Vaidya

Distributed computing in Nature

What is distributed computing?

A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable.

Leslie Lamport

What is distributed computing?

Parallel computing versus distributed computing

Example:

To add N numbers where N very large use 4 processors, each adding up N/4, then add the 4 partial sums

Parallel or distributed ?

What is distributed computing?

- Parallel computing versus distributed computing
- Role of uncertainty in distributed systems
 - Clock drift
 - Network delays
 - Network losses
 - Asynchrony
 - Failures

Clocks

 Notion of *time* very useful in real life, and so it is in distributed systems

• Example ...

Submit programming assignment by e-mail by 11:59 pm Monday

Clocks

 Notion of *time* very useful in real life, and so it is in distributed systems

• Example ...

Submit programming assignment by e-mail by 11:59 pm Monday

By which clock ?

Clocks

 Notion of *time* very useful in real life, and so it is in distributed systems

• Example ...

Submit programming assignment by e-mail by 11:59 pm Monday

If it reaches at 12:01, how do we know it was sent by 11:59 pm?

How to synchronize clocks?

How to synchronize clocks?

Role of delay uncertainty

Ordering of Events

 If we can't have "perfectly" synchronized clocks, can we still accurately determine what happened first?

Distribute Storage

How to improve system availability?

Potentially large network delays ... network partition

• Failures

Replication is a common approach

• If data stored only in one place, far away user will incur significant access delay

→ Store data in multiple replicas,

Clients prefer to access "closest" replica

Replicated Storage

• How to keep replicas "consistent" ?

• What does "consistent" really mean?

Consistency Model

 Since shared memory may be accessed by different processes concurrently, we need to define how the updates are observed by the processes

• *Consistency model* captures these requirements

Consistency #1

- Alice: My cat was hit by a car.
- Alice: But luckily she is fine.

Bob: That's great!

What should Calvin observe?

Consistency #1

- Alice: My cat was hit by a car.
- Alice: But luckily she is fine.

Bob: That's great!

What should Calvin observe?

Consistency #2

- Alice: My cat was hit by a car.
- Alice: But luckily she is fine.

Bob: That's terrible!

What should Calvin observe?

Agreement

• Where to meet for dinner?

Agreement with Failure

• Non-faulty nodes must agree

Agreement with Crash Failure & Asynchrony

What if nodes misbehave?

• Crash failures are benign

• Other extreme ... Byzantine failures

"Local" Algorithms

Each node has an input (scalar or vector)

Each node has an input (scalar or vector)

Consensus: Output in *convex hull* of the inputs

Initially, state = input

As time $\rightarrow \infty$, values become identical

Average Consensus

Each node has an input (scalar or vector)

Average consensus: Output = average of inputs

Average Consensus

Average Consensus Change of Weights

Average Consensus

Average Consensus

As time $\rightarrow \infty$, values converge to *average* of inputs

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} := \begin{pmatrix} 3/4 & 0 & 1/4 \\ 0 & 3/4 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = M \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$M$$

$$b = 3b/4 + c/4$$

$$c = a/4 + b/4 + c/2$$

$$a = 3a/4 + c/4$$

after k iterations

Connected Undirected Graphs

Consensus if M row stochastic

- Matrix elements in [0,1]
- M_{ij} non-zero if link (i,j) exists
- Each row adds to 1

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} := M^{k} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \Rightarrow \begin{pmatrix} p & q & r \\ p & q & r \\ p & q & r \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
Row
stochastic M
$$b = 3b/4 + c/4$$

$$c = a/4 + b/4 + c/2$$

$$a = 3a/4 + c/4$$

Row stochastic M

$\begin{pmatrix} a \\ b \\ c \end{pmatrix} := M \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Due to stochastic rows, each new state in convex hull of old states

Connected Undirected Graphs

- Average consensus if M doubly stochastic
 - Matrix elements in [0,1]
 - M_{ii} non-zero if link (i,j) exists
 - Each row & each column adds to 1

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} := \begin{pmatrix} 3/4 & 0 & 1/4 \\ 0 & 3/4 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = M \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$M$$

Due to stochastic rows, each new state in convex hull of old states

Due to stochastic columns, total "mass" (sum of states) is preserved

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} := M^{k} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \Rightarrow \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
Doubly stochastic M
$$b = 3b/4 + c/4$$

$$c = a/4 + b/4 + c/2$$

$$a = 3a/4 + c/4$$

Consensus

Average Consensus

Optimization argmin $\sum f_i(x)$

Distributed Optimization

 $f(x) = \sum f_i(x)$

Each agent maintains an estimate

- Local estimates shared with neighbors & updated
- Estimates converge to optimum

Example based on [Nedic and Ozdaglar, 2009]

$$x_1 \leftarrow \frac{2}{3}x_1 + \frac{1}{3}x_3 - \alpha \nabla f_1(x_1)$$

$$x_1 \leftarrow \frac{2}{3}x_1 + \frac{1}{3}x_3 - \alpha \nabla f_1(x_1)$$

$$x_3 \leftarrow \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 - \alpha \nabla f_3(x_3)$$

$$x_1[t+1] \leftarrow \frac{2}{3}x_1[t] + \frac{1}{3}x_3[t] - \alpha \nabla f_1(x_1[t])$$

$$x_3[t+1] \leftarrow \frac{1}{3}x_1[t] + \frac{1}{3}x_2[t] + \frac{1}{3}x_3[t] - \alpha \nabla f_3(x_3[t])$$

Distributed Optimization

As time $\rightarrow \infty$

Consensus: All agents converge to same estimate

Optimality

$$x_1 \leftarrow \frac{2}{3}x_1 + \frac{1}{3}x_3 - \alpha \nabla f_1(x_1)$$

$$x_3 \leftarrow \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 - \alpha \nabla f_3(x_3)$$

$$x_1[t+1] \leftarrow \frac{2}{3}x_1[t] + \frac{1}{3}x_3[t] - \alpha \nabla f_1(x_1[t])$$

$$x_3[t+1] \leftarrow \frac{1}{3}x_1[t] + \frac{1}{3}x_2[t] + \frac{1}{3}x_3[t] - \alpha \nabla f_3(x_3[t])$$

$$x_1[t+1] \leftarrow \frac{2}{3}x_1[t] + \frac{1}{3}x_3[t] - \alpha_t \nabla f_1(x_1[t])$$

$$x_3[t+1] \leftarrow \frac{1}{3}x_1[t] + \frac{1}{3}x_2[t] + \frac{1}{3}x_3[t] - \alpha_t \nabla f_3(x_3[t])$$

$$x[t+1] \leftarrow Mx[t] - \alpha_t \nabla f(x[t])$$

Doubly stochastic M

$$x[1] \leftarrow M x[0] - \alpha_0 \nabla f(x[0])$$

$$x[2] \leftarrow M x[1] - \alpha_1 \nabla f(x[1])$$

$$x[1] \leftarrow M x[0] - \alpha_0 \nabla f(x[0])$$

$$x[2] \leftarrow M x[1] - \alpha_1 \nabla f(x[1])$$
$$= M^2 x[0] - \alpha_0 M \nabla f(x[0]) - \alpha_1 \nabla f(x[1])$$

$$x[1] \leftarrow M x[0] - \alpha_0 \nabla f(x[0])$$

$$x[2] \leftarrow M x[1] - \alpha_1 \nabla f(x[1])$$
$$= M^2 x[0] - \alpha_0 M \nabla f(x[0]) - \alpha_1 \nabla f(x[1])$$

 $x[3] \leftarrow M x[2] - \alpha_2 \nabla f(x[2])$

$$x[1] \leftarrow M x[0] - \alpha_0 \nabla f(x[0])$$

$$\begin{aligned} x[2] \leftarrow M x[1] - \alpha_1 \nabla f(x[1]) \\ = M^2 x[0] - \alpha_0 M \nabla f(x[0]) - \alpha_1 \nabla f(x[1]) \end{aligned}$$

$$\begin{aligned} x[3] \leftarrow M x[2] - \alpha_2 \nabla f(x[2]) \\ = M^3 x[0] \\ - \alpha_0 M^2 \nabla f(x[0]) - \alpha_1 M \nabla f(x[1]) - \alpha_2 \nabla f(x[2]) \end{aligned}$$

$$x[1] \leftarrow M x[0] - \alpha_0 \nabla f(x[0])$$

$$x[2] \leftarrow M x[1] - \alpha_1 \nabla f(x[1])$$
$$= M^2 x[0] - \alpha_0 M \nabla f(x[0]) - \alpha_1 \nabla f(x[1])$$

$$\begin{aligned} x[3] \leftarrow M x[2] - \alpha_2 \nabla f(x[2]) \\ = M^3 x[0] \\ - \alpha_0 M^2 \nabla f(x[0]) - \alpha_1 M \nabla f(x[1]) - \alpha_2 \nabla f(x[2]) \end{aligned}$$

Claims

■ Estimates at different nodes converge → Consensus

• The estimates converges to argmin $\sum f_i(x)$