GEMS OF TCS

PvSs NP

Sasha Golovnev
March 16, 2021

Search Problems

SEARCH PROBLEM

Definition

A search problem is defined by an algorithm C
that takes an instance [and a candidate
solution S, and runs in time polynomial in the
length of |. We say that S Is a solution to [iff

C(S,l) = true.

SAT

gAT g o s ech I?u.ot)'lu.

Example

For SAT, | I1s a Boolean formula, S Is an

assignment of Boolean constants to Its

variables. The corresponding algorithm C

checks whether S satisfies all clauses of I.
1= (x v% UKy) A (2 v)

S’—.:- .X\éi cho 7(3::0

K(Iﬁ)) — clecs :f S satisfres al eloe ces oF 1.

CLASS NP

Definition

A search problem is defined by an algorithm C
that takes an instance [and a candidate
solution S, and runs in time polynomial in the
length of I. We say that S Is a solution to [Iff

C(S,l) = true.

CLASS NP

Definition

A search problem is defined by an algorithm C
that takes an instance | and a candidate
solution S, and runs in time polynomial in the
length of I. We say that Sis a solution to [iff
C(S,l) = true.

Definition

NP is the class of all search problems.

+ NP stands for “non-deterministic_polynomial
time”: one can guess a solution, and then
verify Its correctness in polynomial time

- NP stands for “non-deterministic polynomial
time”: one can guess a solution, and then
verify Its correctness in polynomial time

- |In other words, the class NP contains all
problems whose solutions can be efficiently

verified

CLASS P

mb'?w: b-allu-{,c So/g Cow 4’ vln'fj‘.“,

”P ; P ' ‘\oln) LA

Definition

P is the class of all search problems that can be
solved in polynomial time.

P: wah “$ 'F‘ﬂ-." Can lll Qo/UbJ } @ /ulj 'L"“"f

Thw P € NP

T : Line =D
i) o w golve @ wo hlewm 17 "A%
P“")& -1':1,&4\ ;:‘ U;,,. vemFs, o\P;Hul;u v by b =

TRAVELING SALESMAN PROBLEM
(Led-«ﬂ-l 4 (a byc(‘)

Given a complete weighted graph, find a path of
minimum total weight (length) visiting each
node exactly once

C < spme path + length: 6

TRAVELING SALESMAN PROBLEM

Given a complete weighted graph and a
budoet b, find a path of total weight (length)
< b visiting each node exactly once

|

Sz et polt

S s apalt feat vsifs length: 6 < b

C (I'g) - \:-l:Pw‘:{:nzr o;hdﬁ b

1T
(
P w
uluz ng
w th W
1)

m": —
1L NES
=)
i {
'“QP 6[:0'
/g_

p— WV:
(AN C
M
2,}]

log.
: PA(;‘OM“‘:
()

MINIMUM SPANNING TREE

L0t4uu¢
Given a complete weighted graph and a
budget b, connect all vertices by n — 1 edges of

minimum total weight (length) e

K pus kol's
P

length: 6

TSP AND MST

MST

Given n cities, connect
them by (n — 1) roads
of minimal total length

TSP AND MST

MST € P

Given n cities, connect
them by (n — 1) roads
of minimal total length

Can be solved
efficiently poly Hms

TSP AND MST

MST TSP

Given n cities, connect Given n cities, connect
them by (n — 1) roads them in a path of
of minimal total length minimal total length

Can be solved
efficiently

TSP AND MST

MSTé'P) NP Tspe NP

Given n cities, connect Given n cities, connect
them by (n — 1) roads them in a path of
of minimal total length minimal total length

Can be solved we NO polynomial
efficiently Py algorithm known!

LONGEST PATH

Search pmb"“ hocty in poly 1oue .'fS-‘S
C (I : Sy e p:"/a}msloi-
graph, 5) b ,x:n. of delel tr-pin 2b.

Longest path

Input: A weighted graph, two vertices s,t, and a
budget b.

Output: A simple path (containing no repeated
vertices) of total length at least b.

————————

Logest Path eNP

Example

Example

Example

Example [,,...,,,4 Path Problew

Shortest path

Find a simple path from
s to t of total length at
most b BFS, D:slstus

Shortest path € P

Find a simple path from
s to t of total length at
most b

Can be solved
efficiently pey—H™

Shortest path Longest path

Find a simple path from Find a simple path from
s to t of total length at s to t of total length at
most b least b

Can be solved
efficiently

Shortest path € P’ NP Longest path & NP

Find a simple path from Find a simple path from
s to t of total length at s to t of total length at
most b least b

Can be solved ‘I\I_(_)_polynomial
efficiently algorithm known!

INTEGER LINEAR PROGRAMMING PROBLEM

Integer linear programming (Lechen 12)

Input: A set of linear inequalities Ax < b.

Output: Integer solution.

Example

X1 > 0.5
—X1+8X, >0
—X1 — 8Xy; > —8

> X1

Example

X1 > 0.5
—X1+8X, >0
—X1 — 8Xy; > —8

> X1

Example

X1 > 0.5
—X1+ 8, >0
—X1 — 8Xy; > —8

X2

AN

I SRR
I/
I SRR
I SRR
I SRR
e aed
e aed

FFFT
R X
SIIIPrAA
R X
SIIIPrRA
R X
SIIIIIRN
AR X

TN T AT T T]
A A I)
A A A)
A AL)
A AL)
A AL A)
A A A)
A A A A)

AT AT AT AT T)

V2777772778777 722P22NIPRPRPRPAPIAPRIPIAPIAP
B
Y] Y L N Y Yy,
V277777272 Q777WAPPANIPPIPIPAPIPIPAPIRPI PRI IAPR AP RAP2 222
V1772777728777 72P2PAPPPPPPIIIPPIIIRPPIIIAPRPIIA2A2 212
V7772777728777 WPIPPANPIPIIIPPIIIIPIIIRPPIIIAPRPIPIAA2 212
V7772777728777 72P22APPPPPPIIIPPIIRRPPIIIAPRPIPRA2 212
V7772777728777 WPIPPANPPIIIPPIIIIPIIIRPPIIIAPRPIIAA2 212
V7772777728777 72P222AP2PPRPPPIRPPPIIRRPPIIIAPRPIIAA2 212
V7772777728777 WPIPPANPIPIIIPPIIIIPIIRRPPIIIAPR PP AA2 212
V772777728777 LPPRPAPPIIRPPIIIPIIRRPPILIIAPR P PIRAPPI A2
T77777777 Q777 W IFFFAFFFFFFFFFFFFFFFFFFAFFFFF X
V7772777728777 72P222APPPRPPPIRPPPIPIRRPPIIIAPR PP AA2 212
V7772777728777 WPIPPANPPIIRPPIIIIPIIRAPPIIIAPR PP AA2 212
V7772777728777 72P222AP2PPRPPPIRIPPIIRAPPIIIAPR PP AA2 212
V1772777770777 WPIPAANPPIIIPPIIIRIPIIAPRPIPIIAR 2222222 7
R A N VY ////////_‘/Ju--
1027020700777 IWAXFAIRPARRX 27D s Tl o
1727727700777 77X XRNXIL g ek -
V7777777707770 7R

4 —

Example

KRR AR R R AR AR R AR R R AR R R < ST T T 7
KRRRRRRRR AR RRR AR KRR KRS g |] {47 .
KRARRRRRRARRRR AR KRR KRR AW /|| A7 .
KRARRRRRRA KRR AR KRR KRS B] {47 .
KRRRRRRRRA KRR AR KRR KRS WA .
KRRRRRRRR AR AR KRR KRR KR 1114~ .
KRRRRRRRR AR RRR AR KRR R KR | | A .
KRRRRRRRR AR RRR KRR KRR KR 1414 .
R N T Y 1114~ .
KRRRRARRR AR R KRR KRR R KR 1144 .
KRRRRRRRRTRRR KRR KRR R KR 1111 .
KRRRRRRRR AR RR KRR R KRR KR 1144 .
KRARRRRRR AR R KRR KRR K vl .
KRRRRRRRR AR R KRR KRR KR 1141 .
N N NN A L& YR K .
KRARRRRRRR AR AR KRR KRR R KRN {4 .
T S Y B e TR e .
| L. .. LGN . L4 L4 L4
KRRRRRRR R KRR KRR R KRR K SCEE F .
KRARRRRRR YRR KRR R KRR K SLEE K .
KRRRRRRRR KRR R KRR KRR vl .
KRARRRRRR A RRR KRR R KRR K Sk .
N N NN b 11 .
KRARRRRRRY KRR KRR R KRR G bl G .
KRARRRRRRY KRR KRR R KRR W .
KRARRRRRRY AR KRR KRR A A bk K .
KRRRRRRRRYRRRRRRRR AN JA e .
RRRRRRRRARRRRRRRRR

KRARRRRRRAY KRR KRR R KR . .
KRARRRRRR YRR KRR R KR . .
KRARRRRRR YRR KRR KRR . .
NPT BN Z .
NN NN N NN NN b b
NN NN

NN NN

NN NN

NANNANNNYNNNNNNNANN

NN NN NN

NN NN

NN NN NN

NN NN

NN NN NN

NN NN NN NN

NN NN

NANANNANYNNNNNNNN

INTEGER LINEAR PROGRAMMING

LP

Find a real
solution of a system of
linear inequalities

INTEGER LINEAR PROGRAMMING

LP

Find a real
solution of a system of
linear inequalities

Can be solved
efficiently

INTEGER LINEAR PROGRAMMING

LP ILP

Find a real Find an integer
solution of a system of solution of a system of
linear inequalities linear inequalities

Can be solved
efficiently

INTEGER LINEAR PROGRAMMING
L;mn Vmgwm.ﬂ:.‘j CL?CM 9)

/
Lpe P NP iLPeNP
Find a real Find an integer
. a .
solution of a system of solution of a system of
linear inequalities linear inequalities
Can be solved No polynomial

efficiently (u“j‘“"" algorithm known!

A

INDEPENDENT SET PROBLEM

Independent set

Input: A graph and a budget b.

Output: A subset of vertices of size at least b
such that no two of them are adjacent.

Example

Example of an Todeprndest St eNp

INDEPENDENT SETS IN A TREE
L

A maximum independent set In a tree can be
found by a simple greedy algorithm: 1t Is safe to
take into a solution all the leaves.

—

Independent set in
a tree

Find an iIndependent
set of size at least b In
a given tree

Independent set in
a tree

Find an iIndependent
set of size at least b In
a given tree

Can be solved
efficiently

Independent set in
a tree

Find an iIndependent
set of size at least b In
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an iIndependent
set of size at least b In
a given graph

Independent set in

atree € P

Find an iIndependent
set of size at least b In
a given tree

Can be solved
efficiently —pely it

Independent set in
a graph€& NP

Find an iIndependent
set of size at least b In
a given graph

No polynomial
algorithm known!

NP

't turns out that all these hard problems are in
a sense a single hard problem: a polynomial
time algorithm for any of these problems can
be used to solve all of them in polynomial time!

Class P

Problems whose
solution can be
found efficiently z pdy~tue

Class P

Problems whose
solution can be
found efficiently

- MST

- Shortest path
- LP

- 1S on trees

beror usa we keow
poly 1 s a(S golve

e Pwl/)(eu >

Class P

Problems whose
solution can be
found efficiently

- MST

- Shortest path
- LP

- 1S on trees

Class NP

Problems whose
solution can be verified

efficiently = poly -+

Class P

Problems whose
solution can be
found efficiently

- MST

- Shortest path
- LP

- 1S on trees

Class NP

Problems whose
solution can be verified
efficiently

> [[SF
- Longest path
—
o &ao}sﬁ
Ve,
- IS on graphs u..d.-?r.&
. Mg"‘ 8.0(c. #i ou0

St o8| L
.v IS o ‘fms

The main open problem in Computer Science

kew: PENP
s P equal to NP? P =NP/

The main open problem in Computer Science

s P equal to NP?

Millenium Prize Problem

Clay Mathematics Institute: STM prize for

solving the problem .
=ep L Panp
[-P#NP

feed
. 4&; gobion i3 quw“w
’9“ ff-ZFC .

- If P=NP, then all search problems can be
solved in polynomial time.

- If P=NP, then all search problems can be
solved in polynomial time.

- If P#£NP, then there exist search problems that
cannot be solved in polynomial time.

P = " verify o puedf of o The *

P =" find & f""'"f of- The
NY = , e o esseafially ag
PNP 22 i e +

Reductions

INFORMALLY

e ¢ A
*dftg pho- it alg Fon B

We say that a search problem A isLeduced to a
search problem B and write A — B, If a
polynomial time algorithm for B can be used
(as a black box) to solve A in polynomial time.

REDUCTION: A — B

Instance | of A

REDUCTION: A — B

Instance | of A

Algorithm for A

Algorithm for B

REDUCTION: A — B

Instance | of A

Algorithm for A ;l:

Algorithm for B

REDUCTION: A — B

@ SSunt B cou hs tdved
fu poly Fst
Instance | of A
. <+
Algorithm for A f
~
instancof B

Algorithm for B

REDUCTION: A — B

Instance | of A

Algorithm for A ;l:

<
instance f(I) of B

Algorithm for B

no solution to f(/)

REDUCTION: A — B

Instance | of A

Algorithm for A ;l:

-
instance f(I) of B

Algorithm for B

no solution to f(/)

3
no solution to |

REDUCTION: A — B

Instance | of A

Algorithm for A ;l:

-
instance f(I) of B

Algorithm for B

no solution to f(/) solution S to f(/)

3
no solution to |

REDUCTION: A — B

Instance | of A

Algorithm for A

.2

£

~

instance f(I) of B

Algorithm for B

no solution to f(/)

solution S to f(/)
.3
N

h

N~
no solution to |

REDUCTION: A — B

N "Mh Moy “ '/Cu °FA
(F' h) ; v 3u;o {nzh“: of '3

instance | of Ay — Goln Yo B3

: <+
Algorithm for A f Foh= poly Srae |olo s

<
— instance@l) of B
r,,.&, s

gy —— Algorithm for B
L=

no solution to f(/ solution S to f(/)

¢)

no solution to | solution h(S) to

FORMALLY

Definition

We say that a search problem A is reduced to a
search problem B and write A — B, If there
exists a polynomial time algorithm_]f_that
converts any instance | of A into an instance f(/)
of B, together with a polynomial time algorithm
h that converts any solution 5 to f(/) back to a
‘solution hj__) to A. If there is no solution to f{(/),
then there is no solution to I.

NP

GRAPH OF SEARCH PROBLEMS

NP

GRAPH OF SEARCH PROBLEMS

SAT TS 1c
A P 1CP

NP-COMPLETE PROBLEMS
Definition

A search problem is called NP-complete If all
other search problems reduce to It.

NP-COMPLETE PROBLEMS
Definition

A search problem is called NP-complete If all
other search problems reduce to It.

NP

Do they exist?

It's not at all Immediate that NP-complete
problems even exist. We'll see later that all
hard problems that we've seen Iin the previous
part are in fact NP-complete!

IL?. I;; TSPI Lou.y;'/ Pm[‘\ Qe
NP- cmplete

r} f} Casy = /4 “cacy
A hand => B Lawd

Two ways of using A — B:

'u;,,.-kw
. if Bis easy (can be solved in polynomial

time), then so is A s pey~fine

L conndt he qalvad i poly bt
. if Ais hard (cannot be solved in polynomial

time), then SO IS B_ ..ot be colussl in frolsy-dens

A= A i UP-coplebc = Bis NPreonplche

REDUCTIONS COMPOSE

Lemma o
fA—B and B—C(, then A—C

4 =€

NP

PICTORIALLY

NP

PICTORIALLY

NP

PICTORIALLY

SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.

SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.

SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.
?M’F"

SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.

NP

SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.

NP

SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.

NP

NP-Completeness of SAT

Goal IVP

Show that every search problem reduces to SAT.

Goal

Show that every search problem reduces to SAT.

Instead, we show that any problem reduces to
Circult SAT problem, which, in turn, reduces
to SAT.
() G irowit SAT —> SAT
: 1 AT
G Al NP prabloms — Ciawit SAI

735 Circart 13 NP- complete
(Y =2 QAT 5 N?—aow,(e't[?

Circuit

uaf-iolollt o ,\')2' -
C.OMS(OOM’I‘S o, L

Definition

A circuit is a directed acyclic graph of in-degree
at most 2. Nodes of in-degree 0 are called
""s_j_gv_fjjs_and are marked by Boolean variables
and constants. Nodes of in-degree 1 and 2 are
called gates: gates of In-degree 1 are labeled
with NQI gates of in-degree 2 are labeled with

AND or OR; One of the sinks is marked as

Circuit-SAT

Input: A circuit,

Output: An assignment of Boolean values to the
Input variables of the circuit that makes the
output true.

SAT Is a special case of Circult-SAT as a SAT
formula can be represented as a circuit:

Example: (x VyV z)(yVX)

(A)output

CIRCUIT-SAT — SAT

(i) Cirmste SAT =2 347

To reduce Circult-SAT to SAT, we need to design
a polynomial time algorithm that for a given
circuit outputs a SAT formula which iIs
satisfiable, If and only if the circult Is satisfiable

IDEA

- Introduce a Boolean variable for each gate

- For each gate, write down a few clauses that
describe the relationship between this gate
and its direct predecessors 93

NOT GATES

AND GATES

(h1 v g)(ha V) (hiV hy Vv g)

OR GATES

OUTPUT GATE

- The resulting SAT formula Is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of g Is

equal to the value of the gate labeled with
g In the circuit

- The resulting SAT formula Is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of g Is
equal to the value of the gate labeled with
g In the circuit

- Therefore, the SAT formula and the circuit
are equisatisfiable

- The resulting SAT formula Is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of g Is
equal to the value of the gate labeled with
g In the circuit

- Therefore, the SAT formula and the circuit
are equisatisfiable

- The reduction takes polynomial time
(2) Cmow'nl AT — SAT

(e,
L hewnaing L« Gloow - evemy UP’,’Mh
. — Cieenit SAT

Goal

Reduce every search problem to Circuit-SAT.

Goal

Reduce every search problem to Circuit-SAT.

- Let A be a search problem

Goal

Reduce every search problem to Circuit-SAT.

NP
- Let A be a search problem

- We know that there exists an algorithm C
that takes an instance | of A and a
candidate solution S and checks whether S
IS a solution for I in time polynomial in |/|

Goal

Reduce every search problem to Circuit-SAT.

- Let A be a search problem

- We know that there exists an algorithm C
that takes an instance | of A and a
candidate solution S and checks whether S
IS a solution for I in time polynomial in |/|

- In particular,

S| 1s polynomial in |/|

TURN AN ALGORITHM INTO A CIRCUIT

- Note that a computer Is in fact a circuit
Implemented on a chip

TURN AN ALGORITHM INTO A CIRCUIT

- Note that a computer I1s in fact a circuit |
implemented on a chip @

+ Each step of the algorithm C(/,S) is
performed by this computer's circuit

TURN AN ALGORITHM INTO A CIRCUIT

- Note that a computer Is in fact a circuit
Implemented on a chip

- Each step of the algorithm[C(/, 5] is
performed by this computer's circuit

+ This gives a circuit of size polynomial in |/|
that has input bits for I and S and outputs
whether S is a solution for | (a separate
circuit for each input length)

fﬂ,VC NP ’)h-o‘)ftm &}’/"J L’ C
("S 3“’+ e wwmwd&-’ C.’nwi-“gy(!-

REDUCTION

To solve an instance | of the problem A:

- take a circuit corresponding to C(/, -)

REDUCTION

To solve an instance | of the problem A:

- take a circuit corresponding to C(/, -)

- the Inputs to this circuit encode candidate
solutions

REDUCTION

To solve an instance | of the problem A:

+ take a circuit corresponding to C(/, -)

- the Inputs to this circuit encode candidate
solutions

- use a Circult-SAT algorithm for this circuit

to find a solution (if exists) c N
Eviuy NP~ problom Reduees {o Cirewsf =54 7=
C :LM-IP:'\;AT i s “laowutu;{' A/P-meol.u-) *’qu.'g)

NP- coneplete puob lew

SUMMARY
Cinentl- SAT 15 NP-eomle
SAT 5 N B-ereplttR
¢ {.a/)w"‘ TSP 'q MP-M/ZI\('

You wo 5P
Hes sufpiciat 7’:(,

35 15 VO

You

RS up

Circult-SAT

