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Search Problems



SEARCH PROBLEM

Definition

A search problem is defined by an algorithm C
that takes an instance [ and a candidate
solution S, and runs in time polynomial in the
length of |. We say that S Is a solution to [ iff

C(S,l) = true.




SAT

gAT g o s ech I?u.ot)'lu.

Example

For SAT, | I1s a Boolean formula, S Is an

assignment of Boolean constants to Its

variables. The corresponding algorithm C

checks whether S satisfies all clauses of I.
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Definition

A search problem is defined by an algorithm C
that takes an instance [ and a candidate
solution S, and runs in time polynomial in the
length of I. We say that S Is a solution to [ Iff

C(S,l) = true.



CLASS NP

Definition

A search problem is defined by an algorithm C
that takes an instance | and a candidate
solution S, and runs in time polynomial in the
length of I. We say that Sis a solution to [ iff
C(S,l) = true.

Definition

NP is the class of all search problems.



+ NP stands for “non-deterministic_polynomial
time”: one can guess a solution, and then
verify Its correctness in polynomial time



- NP stands for “non-deterministic polynomial
time”: one can guess a solution, and then
verify Its correctness in polynomial time

- |In other words, the class NP contains all
problems whose solutions can be efficiently

verified



CLASS P

mb'?w: b-allu-{,c So/g Cow 4’ vln'fj‘.“,

”P ; P ' ‘\oln) LA

Definition

P is the class of all search problems that can be
solved in polynomial time.
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TRAVELING SALESMAN PROBLEM
(Led-«ﬂ-l 4 (a byc(‘)

Given a complete weighted graph, find a path of
minimum total weight (length) visiting each
node exactly once

C < spme path + length: 6



TRAVELING SALESMAN PROBLEM

Given a complete weighted graph and a
budoet b, find a path of total weight (length)
< b visiting each node exactly once

|
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S s apalt feat vsifs length: 6 < b
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MINIMUM SPANNING TREE

L0t4uu¢
Given a complete weighted graph and a
budget b, connect all vertices by n — 1 edges of

minimum total weight (length) e

K pus kol's
P

length: 6



TSP AND MST

MST

Given n cities, connect
them by (n — 1) roads
of minimal total length



TSP AND MST

MST € P

Given n cities, connect
them by (n — 1) roads
of minimal total length

Can be solved
efficiently poly Hms



TSP AND MST

MST TSP

Given n cities, connect Given n cities, connect
them by (n — 1) roads them in a path of
of minimal total length minimal total length

Can be solved
efficiently



TSP AND MST

MSTé'P) NP Tspe NP

Given n cities, connect Given n cities, connect
them by (n — 1) roads them in a path of
of minimal total length minimal total length

Can be solved we  NO polynomial
efficiently Py algorithm known!



LONGEST PATH

Search pmb"“ hocty in poly 1oue .'fS-‘S
C (I : Sy e p:"/a}msloi-
graph, 5 ) b ,x:n. of delel tr-pin 2b.

Longest path

Input: A weighted graph, two vertices s,t, and a
budget b.

Output: A simple path (containing no repeated
vertices) of total length at least b.

————————

Logest Path eNP



Example
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Example [,,...,,,4 Path Problew




Shortest path

Find a simple path from
s to t of total length at
most b BFS, D:slstus



Shortest path € P

Find a simple path from
s to t of total length at
most b

Can be solved
efficiently  pey—H™



Shortest path Longest path

Find a simple path from  Find a simple path from
s to t of total length at s to t of total length at
most b least b

Can be solved
efficiently



Shortest path € P’ NP Longest path & NP

Find a simple path from  Find a simple path from
s to t of total length at s to t of total length at
most b least b

Can be solved ‘I\I_(_)_polynomial
efficiently algorithm known!



INTEGER LINEAR PROGRAMMING PROBLEM

Integer linear programming (Lechen 12)

Input: A set of linear inequalities Ax < b.

Output: Integer solution.






Example

X1 > 0.5
—X1+8X, >0
—X1 — 8Xy; > —8

> X1



Example

X1 > 0.5
—X1+8X, >0
—X1 — 8Xy; > —8

> X1



Example

X1 > 0.5
—X1+ 8, >0
—X1 — 8Xy; > —8
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INTEGER LINEAR PROGRAMMING

LP

Find a real
solution of a system of
linear inequalities



INTEGER LINEAR PROGRAMMING

LP

Find a real
solution of a system of
linear inequalities

Can be solved
efficiently



INTEGER LINEAR PROGRAMMING

LP ILP

Find a real Find an integer
solution of a system of  solution of a system of
linear inequalities linear inequalities

Can be solved
efficiently



INTEGER LINEAR PROGRAMMING
L;mn Vmgwm.ﬂ:.‘j CL?CM 9)

/
Lpe P NP iLPeNP
Find a real Find an integer
. a .
solution of a system of  solution of a system of
linear inequalities linear inequalities
Can be solved No polynomial

efficiently (u“j‘“"" algorithm known!
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INDEPENDENT SET PROBLEM

Independent set

Input: A graph and a budget b.

Output: A subset of vertices of size at least b
such that no two of them are adjacent.



Example




Example of an Todeprndest St eNp




INDEPENDENT SETS IN A TREE
L

A maximum independent set In a tree can be
found by a simple greedy algorithm: 1t Is safe to
take into a solution all the leaves.

—




Independent set in
a tree

Find an iIndependent
set of size at least b In
a given tree



Independent set in
a tree

Find an iIndependent
set of size at least b In
a given tree

Can be solved
efficiently



Independent set in
a tree

Find an iIndependent
set of size at least b In
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an iIndependent
set of size at least b In
a given graph



Independent set in

atree € P

Find an iIndependent
set of size at least b In
a given tree

Can be solved
efficiently —pely it

Independent set in
a graph€& NP

Find an iIndependent
set of size at least b In
a given graph

No polynomial
algorithm known!




NP

't turns out that all these hard problems are in
a sense a single hard problem: a polynomial
time algorithm for any of these problems can
be used to solve all of them in polynomial time!




Class P

Problems whose
solution can be
found efficiently z pdy~tue



Class P

Problems whose
solution can be
found efficiently

- MST

- Shortest path
- LP

- 1S on trees
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Class P

Problems whose
solution can be
found efficiently

- MST

- Shortest path
- LP

- 1S on trees

Class NP

Problems whose
solution can be verified

efficiently = poly -+



Class P

Problems whose
solution can be
found efficiently

- MST

- Shortest path
- LP

- 1S on trees

Class NP

Problems whose
solution can be verified
efficiently
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- Longest path
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The main open problem in Computer Science

kew: PENP
s P equal to NP? P =NP/



The main open problem in Computer Science

s P equal to NP?

Millenium Prize Problem

Clay Mathematics Institute: STM prize for

solving the problem .
=ep L Panp
[-P#NP
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. 4&; gobion i3 quw“w
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- If P=NP, then all search problems can be
solved in polynomial time.



- If P=NP, then all search problems can be
solved in polynomial time.

- If P#£NP, then there exist search problems that
cannot be solved in polynomial time.

P = " verify o puedf of o The *
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Reductions



INFORMALLY

e ¢ A
*dftg pho- it alg Fon B

We say that a search problem A isLeduced to a
search problem B and write A — B, If a
polynomial time algorithm for B can be used
(as a black box) to solve A in polynomial time.




REDUCTION: A — B

Instance | of A



REDUCTION: A — B

Instance | of A

Algorithm for A

Algorithm for B




REDUCTION: A — B

Instance | of A

Algorithm for A ;l:

Algorithm for B




REDUCTION: A — B

@ SSunt B cou hs tdved
fu poly Fst
Instance | of A
. <+
Algorithm for A f
~
instancof B

Algorithm for B




REDUCTION: A — B

Instance | of A

Algorithm for A ;l:

<
instance f(I) of B

Algorithm for B

no solution to f(/)




REDUCTION: A — B

Instance | of A

Algorithm for A ;l:

-
instance f(I) of B

Algorithm for B

no solution to f(/)

3
no solution to |




REDUCTION: A — B

Instance | of A

Algorithm for A ;l:

-
instance f(I) of B

Algorithm for B

no solution to f(/) solution S to f(/)

3
no solution to |




REDUCTION: A — B

Instance | of A

Algorithm for A

.2

£

~

instance f(I) of B

Algorithm for B

no solution to f(/)

solution S to f(/)
.3
N

h

N~
no solution to |




REDUCTION: A — B
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instance | of Ay — Goln Yo B3
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gy —— Algorithm for B
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no solution to f(/ solution S to f(/)
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no solution to | solution h(S) to




FORMALLY

Definition

We say that a search problem A is reduced to a
search problem B and write A — B, If there
exists a polynomial time algorithm_]f_that
converts any instance | of A into an instance f(/)
of B, together with a polynomial time algorithm
h that converts any solution 5 to f(/) back to a
‘solution hj__) to A. If there is no solution to f{(/),
then there is no solution to I.
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GRAPH OF SEARCH PROBLEMS




NP

GRAPH OF SEARCH PROBLEMS
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NP-COMPLETE PROBLEMS
Definition

A search problem is called NP-complete If all
other search problems reduce to It.



NP-COMPLETE PROBLEMS
Definition

A search problem is called NP-complete If all
other search problems reduce to It.

NP




Do they exist?

It's not at all Immediate that NP-complete
problems even exist. We'll see later that all
hard problems that we've seen Iin the previous
part are in fact NP-complete!

IL?. I;; TSPI Lou.y;'/ Pm[‘\ Qe
NP- cmplete



r} f} Casy = /4 “cacy
A hand => B Lawd

Two ways of using A — B:

'u;,,.-kw
. if Bis easy (can be solved in polynomial

time), then so is A s pey~fine

L conndt he qalvad i poly bt
. if Ais hard (cannot be solved in polynomial

time), then SO IS B_ ..ot be colussl in frolsy-dens
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REDUCTIONS COMPOSE

Lemma o
fA—B and B—C(, then A—C
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NP

PICTORIALLY




NP

PICTORIALLY




NP

PICTORIALLY




SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.



SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.




SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.
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SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.

NP




SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.

NP




SHOWING NP-COMPLETENESS

Corollary

If A— B and A i1s NP-complete, then so Is B.

NP




NP-Completeness of SAT



Goal IVP

Show that every search problem reduces to SAT.



Goal

Show that every search problem reduces to SAT.

Instead, we show that any problem reduces to
Circult SAT problem, which, in turn, reduces
to SAT.
() G irowit SAT —> SAT
: 1 AT
G Al NP prabloms — Ciawit SAI

735 Circart 13 NP- complete
(Y =2 QAT 5 N?—aow,(e't[?




Circuit
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Definition

A circuit is a directed acyclic graph of in-degree
at most 2. Nodes of in-degree 0 are called
""s_j_gv_fjjs_and are marked by Boolean variables
and constants. Nodes of in-degree 1 and 2 are
called gates: gates of In-degree 1 are labeled
with NQI gates of in-degree 2 are labeled with

AND or OR; One of the sinks is marked as



Circuit-SAT

Input: A circuit,

Output: An assignment of Boolean values to the
Input variables of the circuit that makes the
output true.



SAT Is a special case of Circult-SAT as a SAT
formula can be represented as a circuit:

Example: (x VyV z)(yVX)

(A)output




CIRCUIT-SAT — SAT

(i) Cirmste SAT =2 347

To reduce Circult-SAT to SAT, we need to design
a polynomial time algorithm that for a given
circuit outputs a SAT formula which iIs
satisfiable, If and only if the circult Is satisfiable



IDEA

- Introduce a Boolean variable for each gate

- For each gate, write down a few clauses that
describe the relationship between this gate
and its direct predecessors 93



NOT GATES




AND GATES

(h1 v g)(ha V) (hiV hy Vv g)



OR GATES




OUTPUT GATE



- The resulting SAT formula Is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of g Is

equal to the value of the gate labeled with
g In the circuit



- The resulting SAT formula Is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of g Is
equal to the value of the gate labeled with
g In the circuit

- Therefore, the SAT formula and the circuit
are equisatisfiable



- The resulting SAT formula Is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of g Is
equal to the value of the gate labeled with
g In the circuit

- Therefore, the SAT formula and the circuit
are equisatisfiable

- The reduction takes polynomial time
(2) Cmow'nl AT — SAT

(e,
L hewnaing L« Gloow - evemy UP’,’Mh
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Goal

Reduce every search problem to Circuit-SAT.



Goal

Reduce every search problem to Circuit-SAT.

- Let A be a search problem



Goal

Reduce every search problem to Circuit-SAT.

NP
- Let A be a search problem

- We know that there exists an algorithm C
that takes an instance | of A and a
candidate solution S and checks whether S
IS a solution for I in time polynomial in |/|



Goal

Reduce every search problem to Circuit-SAT.

- Let A be a search problem

- We know that there exists an algorithm C
that takes an instance | of A and a
candidate solution S and checks whether S
IS a solution for I in time polynomial in |/|

- In particular,

S| 1s polynomial in |/|



TURN AN ALGORITHM INTO A CIRCUIT

- Note that a computer Is in fact a circuit
Implemented on a chip



TURN AN ALGORITHM INTO A CIRCUIT

- Note that a computer I1s in fact a circuit |
implemented on a chip @

+ Each step of the algorithm C(/,S) is
performed by this computer's circuit




TURN AN ALGORITHM INTO A CIRCUIT

- Note that a computer Is in fact a circuit
Implemented on a chip

- Each step of the algorithm[C(/, 5] is
performed by this computer's circuit

+ This gives a circuit of size polynomial in |/|
that has input bits for I and S and outputs
whether S is a solution for | (a separate
circuit for each input length)

fﬂ,VC NP ’)h-o‘)ftm &}’/"J L’ C
("S 3“’+ e wwmwd&-’ C.’nwi-“gy(!-



REDUCTION

To solve an instance | of the problem A:

- take a circuit corresponding to C(/, -)



REDUCTION

To solve an instance | of the problem A:

- take a circuit corresponding to C(/, -)

- the Inputs to this circuit encode candidate
solutions



REDUCTION

To solve an instance | of the problem A:

+ take a circuit corresponding to C(/, -)

- the Inputs to this circuit encode candidate
solutions

- use a Circult-SAT algorithm for this circuit

to find a solution (if exists) c N
Eviuy NP~ problom Reduees {o Cirewsf =54 7=
C :LM-IP:'\;AT i s “laowutu;{' A/P-meol.u- ) *’qu.'g)

NP- coneplete  puob lew
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