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APPROXIMATION ALGORITHMS

- Optimal exact solution OPT (ex: shortest TSP
cycle)

- OPT is too hard to find (ex: NP-hard)

- A k-approximation algorithm finds a solution
< kR x OPT

- Possibly efficiently! (ex: poly time)

- When do we use approximation algorithms?
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MATCHINGS

- A Matching in a graph Is a set of edges without
common vertices

- A Maximal Matching is a matching which
cannot be extended to a larger matching

- A Maximum Matching is a matching of the
largest size i5 e Moveol mgfiy L.
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JOB ASSIGNMENT

Alice | Ben | Chris | Diana

Administrator + +
Programmer + +
Librarian + +

Professor +
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ROOM ASSIGNMENT

R# 1

R# 2

R# 3

R# 4

R# 5

R# 6

Aaron

Bianca

Carol

Dana

Emma

Francis
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ALGORITHMS
Maximal Matching

algorithm

Maximum Matching

Can be found in polynomial time by t
blossom algorithm

Minimum Weight Perfect Matching

Can be found In polynomial time by Edmonds’
algorithm
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VERTEX COVERS

- A Vertex Cover of a graph G Is a set of
vertices C such that every edge of G Is
connected to some vertex in C.

- A Minimal Vertex Cover is a vertex cover which
does not contain other vertex covers.

- A Minimum Vertex Cover Is a vertex cover of
the smallest size.
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ALGORITHMS

Minim‘a_l'Vertex Cover
Can be found In polynomial time by a greedy

algorithm EASY




ALGORITHMS

Minimal Vertex Cover

Can be found In polynomial time by a greedy
algorithm

Minimum Vertex Cover

Is NP-hard. We only know exponential-time
algorithms
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APPROXIMATION ALGORITHM

.[m;rnaximal matching in G }

- return all vertices in M
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c C+0

- while E # ()
- {u,v} < any edge from E




EQUIVALENT ALGORITHM

c C+0

- while E # ()
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EQUIVALENT ALGORITHM

c C+0

- while E # ()
- {u,v} < any edge from E
-add u,vto C

\ delete from E all edges incident t
. return C R
R
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PROOF

Lemma

This algorithm runs in polynomial time and iIs
2-approximate: it returns a vertex cover that is
at most twice larger then a minimum vertex

cover.
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FINAL REMARKS

- The analysis Is tight: there are graphs with
matchings twice larger than vertex covers



FINAL REMARKS

- The analysis Is tight: there are graphs with
matchings twice larger than vertex covers

- No 1.99-approximation algorithm is known
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Break
Matchings:
http://bit.ly/job_assignment
Vertex covers:
http://bit.ly/antivirus_system
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APPROXIMATION

- If P £ NP, then there Is no k-approximation
algorithm for the general version of TSP for
any constant R

- Euclidean TSP: w(u,v) = w(v,u) and
w(u,v) < w(u,z) + w(z,v)

- We will design a 2-approximation algorithm: it
qguickly finds a cycle that Is at most twice
longer than an optimal one
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DEFINITION

- A tree Is a connected graph without cycles

- A tree Is a connected graph on n vertices with
n — 1 edges

- A Spanning Tree of a graph G I1s a subgraph of
G that (i) is a tree and (ii) contains all vertices

of G

- CmsT)
- A Minimum Spanning Tree of a weighted graph

G IS a spanning tree of the smallest weight
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MINIMUM SPANNING TREES

Lemma L/

Let G be an undirected graph with

If L can

non-negative edge weights. Then ind 3::4
MST(G) < (TSP(G). sele of
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MINIMUM SPANNING TREES

Lemma

Let G be an undirected graph with
non-negative edge weights. Then
MST(G) < TSP(G).

Proof

By removing any edge from an optimum TSP
cycle one gets a spanning tree of G.
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exactly once



EULERIAN CYCLE

An Eulerian cycle (or path) visits every edge
exactly once

Criteria

A connected undirected graph contains an
Eulerian cycle, If and only If the degree of
every node Is even
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Non-Eulerian graph
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ALGORITHM

- T < minimum spanning tree of G
- D+ T with each edge doubled
- find an Eulerian cycle Cin D

- return a cycle that visits the nodes in the
order of their first appearance in C
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APPROXIMATION GUARANTEE

Lemma
The algorithm Is 2-approximate.

Proof

- The total length of the MST T < OPT
- We start with Eulerian cycle of length 2|T|
+ Shortcuts can only decrease the total length
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- T <« minimum spanning tree of G

- M < minimum weight perfect matching
on odd-degree vertices of T

- find an Eulerian cycle Cin TUM

- return a cycle that visits the nodes in the
order of their first appearance in C



APPROXIMATION GUARANTEE

Lemma
The algorithm is 3/2-approximate.



APPROXIMATION GUARANTEE

Lemma
The algorithm is 3/2-approximate.

Proof
- The total length of the MST T < OPT

\
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APPROXIMATION GUARANTEE

Lemma
The algorithm is 3/2-approximate.

Proof

- The total length of the MST T < OPT
+ The weight of the matching M < OPT /2



APPROXIMATION GUARANTEE

Lemma
The algorithm is 3/2-approximate.

Proof

- T
- T
. S

ne total length of the MST T < OPT
he weight of the matching M < OPT /2

hortcuts can only decrease the total length
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FINAL REMARKS

- Euclidean TSP can be approximated to within
any factor (1+ ¢)

- The currently best known approximation
algorithm for TSP with triangle inequality Is

————

has approximation factor of 3/2 —110—36 ]
(July 2020)




