GEMS OF TCS

RANDOMIZED ALGORITHMS

Sasha Golovnev

February 2, 2021

RANDOMIZED ALGORITHMS

 Randomized algorithm may be faster and simpler

RANDOMIZED ALGORITHMS

 Randomized algorithm may be faster and simpler

For some tasks randomness is necessary

RANDOMIZED ALGORITHMS

 Randomized algorithm may be faster and simpler

For some tasks randomness is necessary

 We'll use randomized algorithms in virtually all following topics

• Sample Space Ω .

• Sample Space Ω .

$$\Omega = \{1, 2, 3, 4, 5, 6\};$$

• Sample Space Ω .

$$\Omega = \{1, 2, 3, 4, 5, 6\}; \ \Omega = \{HH, HT, TH, TT\}$$

• Sample Space Ω . $\Omega = \{1, 2, 3, 4, 5, 6\}; \ \Omega = \{HH, HT, TH, TT\}$

• Event $A \subseteq \Omega$.

• Sample Space Ω . $\Omega = \{1, 2, 3, 4, 5, 6\}; \ \Omega = \{HH, HT, TH, TT\}$

• Event $A \subseteq \Omega$. $A = \{2, 4, 6\}$;

• Sample Space Ω . $\Omega = \{1, 2, 3, 4, 5, 6\}; \ \Omega = \{HH, HT, TH, TT\}$

• Event
$$A \subseteq \Omega$$
. $A = \{2, 4, 6\}$; $A = \{TT, TH\}$

- Sample Space Ω . $\Omega = \{1, 2, 3, 4, 5, 6\}; \ \Omega = \{HH, HT, TH, TT\}$
- Event $A \subseteq \Omega$. $A = \{2, 4, 6\}; A = \{TT, TH\}$
- Probability measure: $\forall A, Pr(A) \in [0, 1]$

- Sample Space Ω .
 - $\Omega = \{1, 2, 3, 4, 5, 6\}; \ \Omega = \{HH, HT, TH, TT\}$
- Event $A \subseteq \Omega$. $A = \{2, 4, 6\}; A = \{TT, TH\}$
- Probability measure: $\forall A, Pr(A) \in [0, 1]$
 - $Pr(\Omega) = 1$

- Sample Space Ω .
 - $\Omega = \{1, 2, 3, 4, 5, 6\}; \ \Omega = \{HH, HT, TH, TT\}$
- Event $A \subseteq \Omega$. $A = \{2, 4, 6\}; A = \{TT, TH\}$
- Probability measure: $\forall A, Pr(A) \in [0, 1]$
 - $Pr(\Omega) = 1$
 - $\underline{A_1}, \underline{A_2}, \dots$ are disjoint: $\Pr[\bigcup_i A_i] = \sum_i \Pr[A_i]$

- Sample Space Ω . $\Omega = \{1, 2, 3, 4, 5, 6\}; \ \Omega = \{HH, HT, TH, TT\}$
- Event $A \subseteq \Omega$. $A = \{2, 4, 6\}; A = \{TT, TH\}$
- Probability measure: $\forall A, Pr(A) \in [0, 1]$
 - $Pr(\Omega) = 1$
 - A_1, A_2, \ldots are disjoint: $\Pr[\bigcup_i A_i] = \sum_i \Pr[A_i]$
- $A_1 = \{HH\}, A_2 = \{HT\},$ $Pr[A_1 \cup A_2] = Pr[A_1] + Pr[A_2]$

• A_1 and A_2 are independent iff $Pr[A_1 \cap A_2] = Pr[A_1] \cdot Pr[A_2]$

- A_1 and A_2 are independent iff $Pr[A_1 \cap A_2] = Pr[A_1] \cdot Pr[A_2]$
- $A_1 = \{1st \text{ die is 6}\}, A_2 = \{2nd \text{ die is 6}\}$

- A_1 and A_2 are independent iff $Pr[A_1 \cap A_2] = Pr[A_1] \cdot Pr[A_2]$
- $A_1 = \{1st \text{ die is 6}\}, A_2 = \{2nd \text{ die is 6}\}$

$$Pr[A_1] = 1/6;$$

- A_1 and A_2 are independent iff $Pr[A_1 \cap A_2] = Pr[A_1] \cdot Pr[A_2]$
- $A_1 = \{1st \text{ die is 6}\}, A_2 = \{2nd \text{ die is 6}\}$

$$Pr[A_1] = 1/6; \quad Pr[A_2] = 1/6;$$
(1,1) (1,2) (1,3)

- A_1 and A_2 are independent iff $Pr[A_1 \cap A_2] = Pr[A_1] \cdot Pr[A_2]$
- $A_1 = \{1st \text{ die is 6}\}, A_2 = \{2nd \text{ die is 6}\}$

$$Pr[A_1] = 1/6$$
; $Pr[A_2] = 1/6$; $Pr[A_1 \cap A_2] = 1/36$
 $Pr[A_1] = 1/6$; $Pr[A_1 \cap A_2] = 1/36$

- A_1 and A_2 are independent iff $Pr[A_1 \cap A_2] = Pr[A_1] \cdot Pr[A_2]$
- $A_1 = \{1st \text{ die is 6}\}, A_2 = \{2nd \text{ die is 6}\}$

$$Pr[A_1] = 1/6$$
; $Pr[A_2] = 1/6$; $Pr[A_1 \cap A_2] = 1/36$

• $A_1 = \{1st \text{ die is 1}\}, A_2 = \{sum \text{ of two dice is 2}\}$

- A_1 and A_2 are independent iff $Pr[A_1 \cap A_2] = Pr[A_1] \cdot Pr[A_2]$
- $A_1 = \{1st \text{ die is 6}\}, A_2 = \{2nd \text{ die is 6}\}$

$$Pr[A_1] = 1/6; \quad Pr[A_2] = 1/6; \quad Pr[A_1 \cap A_2] = 1/36$$

•
$$A_1 = \{1\text{st die is 1}\}, \underline{A_2} = \{\text{sum of two dice is 2}\}\$$
• $\mathbf{Pr}[A_1] = 1/6;$

- A_1 and A_2 are independent iff $Pr[A_1 \cap A_2] = Pr[A_1] \cdot Pr[A_2]$
- $A_1 = \{1st \text{ die is 6}\}, A_2 = \{2nd \text{ die is 6}\}$

$$Pr[A_1] = 1/6$$
; $Pr[A_2] = 1/6$; $Pr[A_1 \cap A_2] = 1/36$

• $A_1 = \{1st \text{ die is 1}\}, A_2 = \{sum \text{ of two dice is 2}\}$

$$Pr[A_1] = 1/6; Pr[A_2] = 1/36;$$

- A_1 and A_2 are independent iff $Pr[A_1 \cap A_2] = Pr[A_1] \cdot Pr[A_2]$
- $A_1 = \{1st \text{ die is 6}\}, A_2 = \{2nd \text{ die is 6}\}$

$$Pr[A_1] = 1/6$$
; $Pr[A_2] = 1/6$; $Pr[A_1 \cap A_2] = 1/36$

• $A_1 = \{ 1 \text{st die is 1} \}, A_2 = \{ \text{sum of two dice is 2} \}$

$$Pr[A_1] = 1/6$$
; $Pr[A_2] = 1/36$; $Pr[A_1 \cap A_2] = 1/36$

 Result of experiment is often not event but number

- Result of experiment is often not event but number
- Random variable X $\Omega \to \mathbb{R}$

- Result of experiment is often not event but number
- Random variable $X: \Omega \to \mathbb{R}$
- Toss three coins, X = number of heads

$$\Omega = \{000, 001, 010, 011, (00, 101, 110, 1113)$$
 $X = \{000, 001, 010, 011, (00, 101, 110, 1113)\}$

- Result of experiment is often not event but number
- Random variable $X: \Omega \to \mathbb{R}$
- Toss three coins, X = number of heads
- · Throw two dice:

$$|Y| = \text{sum of numbers}, |Z| = \text{max of numbers}$$

- Result of experiment is often not event but number
- Random variable $X: \Omega \to \mathbb{R}$
- Toss three coins, X = number of heads
- Throw two dice:
 - Y = sum of numbers, Z = max of numbers
- Expected value $\mathbb{E}[X] = \sum_{i} \Pr[x_{i}] \cdot \underline{x_{i}}$ $\mathbf{x} \in \{x_{i}, \dots, x_{n}\}$

- Result of experiment is often not event but number
- Random variable $X: \Omega \to \mathbb{R}$
- Toss three coins, X = number of heads
- Throw two dice:

$$Y = \text{sum of numbers}, Z = \text{max of numbers}$$

- Expected value $\mathbb{E}[X] = \sum_i \Pr[x_i] \cdot x_i$
- Throw a die, X = the number you're getting

wadle,
$$\underline{X} = \text{the number you re getting}$$

$$\mathbb{E}[X] = \int_{6}^{1} \cdot 1 \cdot 1 + \frac{1}{6} \cdot 2 + \dots + \frac{1}{6} \cdot 6 = \underline{3.5}$$

$$P_{e}L_{1}$$

Cloud Sync

Synchronize local files to the cloud

Synchronize local files to the cloud

• Has file been changed? File length: *n* bits

· Synchronize local files to the cloud

• Has file been changed? File length: *n* bits

Algorithm: send n bits

· Synchronize local files to the cloud

Has file been changed? File length: n bits

Algorithm: send n bits

• Can send n-1 bits?

CLOUD SYNC. LOWER BOUND

n hits

CLOUD SYNC. LOWER BOUND

|--|

CLOUD SYNC. LOWER BOUND

manged this bit

1 0 0 1 1 0 1 1 0 0

CLOUD SYNC. LOWER BOUND

deterministic = non-randomized

No algorithm can solve the problem by sending n-1 bits

CLOUD SYNC. LOWER BOUND

No algorithm can solve the problem by sending n-1 bits

Randomized algorithm can solve the problem by sending $\approx \log n$ bits!

local file

1 0 0 1 1 0 0 0

local file

$$a \in \{0, \dots, 2^n - 1\}$$

1	0	0	1	1	1	1	1	0	0

cloud file

local file

$$a \in \{0, \dots, 2^n - 1\}$$

$$b \in \{0, \dots, 2^n - 1\}$$

1 0 0 1 1 1 1 0	1		1 0	0	1	1	1	1	1	0	0	
-----------------	---	--	-----	---	---	---	---	---	---	---	---	--

cloud file

local file

$$a \in \{0,\ldots,2^n-1\}$$

Pick random
$$\begin{array}{l}
\text{prime } p \in \\
\{2, 3, \dots, 100n^2 \log n\}
\end{array}$$

$$b \in \{0, \dots, 2^n - 1\}$$

		1	0	0	1	1	1	1	1	0	0	
--	--	---	---	---	---	---	---	---	---	---	---	--

cloud file

local file

local file

EQ iff

1 0 0 1 1 0 1 1 0 0
$$a \in \{0, \dots, 2^n - 1\}$$

Pick random prime $p \in \{2, 3, \dots, 100n^2 \log n\}$

{0,..., p-13 = {0,--, cloud file #bits = leg (100n² lagn) = leg100 x 2 legn x leglagn

a = b we want server to cong a = b almost
a + b we want server to say a = b almost
never

a = b VP

a = b mod P

Files are same => server says a = b

• If a = b, then for every p, $a = b \mod p$. We always output EQ!

- If a = b, then for every p, $a = b \mod p$. We always output EQ!
- If $a \neq b$, how often do we output EQ?

- If a = b, then for every p, $a = b \mod p$. We always output EQ!
- If $a \neq b$, how often do we output EQ?
- $a b = 0 \mod p$.

- If a = b, then for every p, $a = b \mod p$. We always output EQ!
- If $a \neq b$, how often do we output EQ?
- $a b = 0 \mod p.$ $2^n > a b$

- If a = b, then for every p, $a = b \mod p$. We always output EQ!
- If $a \neq b$, how often do we output EQ?
- $a-b=0 \mod p$.

$$2^n \ge a - b = \underbrace{p_1 \cdot p_2 \cdots p_k}_{P_i \geqslant 2}$$

- If a = b, then for every p, $a = b \mod p$. We always output EQ!
- If $a \neq b$, how often do we output EQ?
- $a b = 0 \mod p$.

- If a = b, then for every p, $a = b \mod p$. We always output EQ!
- If $a \neq b$, how often do we output EQ?
- $a-b=0 \mod p$.
- $2^n \ge a b = p_1 \cdot p_2 \cdots p_k \ge 2^k$ pe {2,3,--, 100n2/egn}
- Prime Number Theorem: there are $\approx N/\log N$ prime numbers in the interval $\{2, 3, ..., N\}$

- If a = b, then for every p, $a = b \mod p$. We always output EQ!
- If $a \neq b$, how often do we output EQ?
- $a-b=0 \mod p$. $2^n \ge a-b=p_1 \cdot p_2 \cdots p_k \ge 2^k$
- Prime Number Theorem: there are $\approx N/\log N$ prime numbers in the interval $\{2, 3, ..., N\}$
- With probability $\approx 1 \frac{1}{100n^{\bullet}}$ the output is correct

$$\mathbb{E}[X + Y]$$
?

$$\mathbb{E}[X + Y] = \sum_{i,j} \Pr[X = X_i \cap Y = y_j] \cdot (X_i + y_j)$$

$$\mathbb{E}[X+Y]?$$

$$\mathbb{E}[X+Y] = \sum_{i} i, j \Pr[X = x_{i} \cap Y = y_{j}] \cdot (x_{i} + y_{j})$$

$$= \sum_{i} x_{i} \sum_{j} \Pr[X = x_{i} \cap Y = y_{j}] = \Pr[X = x_{i}]$$

$$+ \sum_{j} y_{j} \sum_{i} \Pr[X = x_{i} \cap Y = y_{j}] = \Pr[X = x_{i}]$$

$$\mathbb{E}[X + Y]$$
?

$$\mathbb{E}[X + Y] = \sum_{i} i, j \Pr[X = x_i \cap Y = y_j] \cdot (x_i + y_j)$$

$$= \sum_{i} x_i \sum_{j} \Pr[X = x_i \cap Y = y_j]$$

$$+ \sum_{j} y_j \sum_{i} \Pr[X = x_i \cap Y = y_j]$$

$$= \sum_{i} x_i \Pr[X = x_i] + \sum_{i} y_j \sum_{i} \Pr[Y = y_j]$$

$$\mathbb{E}[X + Y]$$
?

$$\mathbb{E}[X + Y] = \sum_{i} i, j \Pr[X = x_{i} \cap Y = y_{j}] \cdot (x_{i} + y_{j})$$

$$= \sum_{i} x_{i} \sum_{j} \Pr[X = x_{i} \cap Y = y_{j}]$$

$$+ \sum_{j} y_{j} \sum_{i} \Pr[X = x_{i} \cap Y = y_{j}]$$

$$= \sum_{i} x_{i} \Pr[X = x_{i}] + \sum_{j} y_{j} \bigvee_{i} \Pr[Y = y_{j}]$$

$$=\mathbb{E}[X]+\mathbb{E}[Y]$$

• One die: $\mathbb{E}[X] = 3.5$

- One die: $\mathbb{E}[X] = 3.5$
- Five dice? $\mathbb{E}[X_1 + X_2 + X_3 + X_4 + X_5]$?

```
11111 1112 11113
```

- One die: $\mathbb{E}[X] = 3.5$
- Five dice? $\mathbb{E}[X_1 + X_2 + X_3 + X_4 + X_5]$?
- By linearity of expectation:

$$\mathbb{E}[X_1 + X_2 + X_3 + X_4 + X_5]$$

$$= \mathbb{E}[X_1] + \mathbb{E}[X_2] + \mathbb{E}[X_3] + \mathbb{E}[X_4] + \mathbb{E}[X_5]$$

$$= 5 \cdot 3.5 = 17.5$$

BREAK

- · Alice and Bob have (unusual) dice
- Numbers on Alice's die are 2, 2, 2, 2, 3, 3
- Numbers on Bob's die are 1, 1, 1, 1, 6, 6
- Alice and Bob throw their dice; the one with the larger number on the die wins
- · Whose die has larger expected number? Bob
- · Who wins with higher probability? Alice

Maximum Cut (Max-CUT)

• Undirected graph G, vertices V, edges E

Undirected graph G, vertices V, edges E

 Bipartition of V that maximizes the number of edges crossing the partition

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $S \subseteq V$

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$
- Cut $\delta(S) = \{(u, v) \in E : u \in S, v \in \overline{S}\}$

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$
- Cut $\delta(S) = \{(u, v) \in E : u \in S, v \in \overline{S}\}$
- Max-CUT: $\max_{S\subseteq V} \delta(S)$

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$
- Cut $\delta(S) = \{(u, v) \in E : u \in S, v \in \overline{S}\}$
- Max-CUT: $\max_{S\subseteq V} \delta(S)$
- NP-hard to solve

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$
- Cut $\delta(S) = \{(u, v) \in E : u \in S, v \in \overline{S}\}$
- Max-CUT: $\max_{S \subset V} \delta(S)$
- NP-hard to solve exactly

RANDOMIZED APPROXIMATION

Output a random subset S ⊆ V

RANDOMIZED APPROXIMATION

• Output a random subset $S \subseteq V$

 In other words, add each vertex v in S independently with probability 1/2

RANDOMIZED APPROXIMATION

• Output a random subset $S \subseteq V$

 In other words, add each vertex v in S independently with probability 1/2

• Each edge (u, v) is cut with probability 1/2

ANALYSIS (4, v) & E

• $X_{u,v} = 1$ if (u, v) is cut, $X_{u,v} = 0$ otherwise

- $X_{u,v} = 1$ if (u, v) is cut, $X_{u,v} = 0$ otherwise
- $X_{u,v} = 1$ with probability 1/2

- $X_{u,v} = 1$ if (u, v) is cut, $X_{u,v} = 0$ otherwise
- $X_{u,v} = 1$ with probability 1/2
- $\mathbb{E}[X_{u,v}] = 1/2$

- $X_{u,v} = 1$ if (u, v) is cut, $X_{u,v} = 0$ otherwise
- $X_{u,v} = 1$ with probability 1/2
- $\mathbb{E}[X_{u,v}] = 1/2$
- Number of cut edges

$$\sum_{(u,v)\in E} X_{u,v}$$

- $X_{u,v} = 1$ if (u, v) is cut, $X_{u,v} = 0$ otherwise
- $X_{u,v} = 1$ with probability 1/2
- $\mathbb{E}[X_{u,v}] = 1/2$
- Number of cut edges

$$\sum_{(u,v)\in E} X_{u,v}$$
 Linearly of Expectation

Expected number of cut edges

$$\mathbb{E}\left[\sum_{(u,v)\in E}X_{u,v}\right] = \sum_{(u,v)\in E}\mathbb{E}\left[X_{u,v}\right] = |E|/2$$

• Max-CUT: OPT $\leq |E|$

• Max-CUT: OPT $\leq |E|$

• Our algorithm: $\mathbb{E}[\delta(S)] \ge |E|/2$

- Max-CUT: OPT $\leq |E|$
- Our algorithm: $\mathbb{E}[\delta(S)] \ge |E|/2$
- $\mathbb{E}[\delta(S)] \geq \mathsf{OPT}/2$

• Max-CUT: OPT $\leq |E|$

• Our algorithm: $\mathbb{E}[\delta(S)] \ge |E|/2$

• $\mathbb{E}[\delta(S)] \ge \mathsf{OPT}/2$

/2

In expertation is purity good.

• Can we have algorithm that always outputs $\delta(S) \ge \mathsf{OPT}/2$?

MARKOV'S INEQUALITY

Theorem

If X is non-negative random variable[∞], then

$$\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}.$$

MARKOV'S INEQUALITY

Theorem

If X is non-negative random variable*, then

$$\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}.$$

Examples:

$$\Pr[X \ge 2\mathbb{E}[X]] \le \frac{1}{2}$$
.

MARKOV'S INEQUALITY

Theorem

If X is non-negative random variable*, then

$$\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}.$$

Examples:

$$\Pr[X \geq 2\mathbb{E}[X]] \leq \frac{1}{2}.$$
 $\alpha = 5 \in \mathbb{C} \times \mathbb{J}$
 $\Pr[X \geq 5\mathbb{E}[X]] \leq \frac{1}{5}.$

Problem

Problem

A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%

• Assume the contrary: the probability to win 500 dollars or more is at least 0.01

Problem

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n

Problem

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n
- Then the budget of the lottery is 10*n* dollars

Problem

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n
- Then the budget of the lottery is 10n dollars
- $10n \times 0.4 = 4n$ dollars are spent on the prizes

Problem

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n
- Then the budget of the lottery is 10*n* dollars
- $10n \times 0.4 = 4n$ dollars are spent on the prizes
- By our assumption at least $\frac{n}{100}$ tickets win at least 500 dollars

Problem

A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%

• In total these tickets win $\frac{n}{100} \times 500 = 5n$ dollars

Problem

- In total these tickets win $\frac{n}{100} \times 500 = 5n$ dollars
- This exceeds the total prize budget of 4n!

Problem

- In total these tickets win $\frac{n}{100} \times 500 = 5n$ dollars
- This exceeds the total prize budget of 4n!
- Contradiction!

 $\mathbb{E} f \geq a \times \Pr[f \geq a] \quad \text{(2)} \quad \Pr[F \geqslant a] \leq \frac{\mathbb{E} f^3}{4}$

$$\mathbb{E} f \ge \underline{a} \times \underline{\Pr[f \ge a]}$$

Suppose f takes values a_1, a_2, a_3, a_4 with probabilities p_1, p_2, p_3, p_4

 $\mathbb{E}f$ is the area of the gray region

GEOMETRIC PROOF $\mathbb{E}f \geq a \times \Pr[f \geq a]$

Suppose f takes values a_1, a_2, a_3, a_4 with probabilities p_1, p_2, p_3, p_4

 $\mathbb{E}f$ is the area of the gray region

 $a \times \Pr[f \ge a]$ is the area of the red region

 $\mathbb{E} f \ge a \times \Pr[f \ge a]$

Suppose f takes values a_1, a_2, a_3, a_4 with probabilities

 $\mathbb{E}f$ is the area of the gray region

 $a \times \Pr[f \ge a]$ is the area of the red region

The gray region is larger: the inequality follows

• $\mathbb{E}[\#\text{cut edges}] = |E|/2 \rightarrow \mathbb{E}[\#\text{uncut edges}] = |E|/2$

- $\mathbb{E}[\#\text{cut edges}] = |E|/2 \to \mathbb{E}[\#\text{uncut edges}] = \frac{|E|}{2}$
- $\Pr[\#\text{uncut edges} \ge \frac{|E|}{2}(1+\varepsilon)] \le \frac{1}{1+\varepsilon}$

- $\mathbb{E}[\#\text{cut edges}] = |E|/2 \to \mathbb{E}[\#\text{uncut edges}]$
- $\Pr[\#\underline{\text{uncut}} \text{ edges} \ge \frac{|E|}{2}(1+\varepsilon)] \le \frac{1}{1+\varepsilon}$
- $\Pr[\#\text{cut edges} \leq \frac{|E|}{2}(1-\varepsilon)] \leq \frac{1}{1+\varepsilon} \leq 1-\varepsilon/2$

- $\mathbb{E}[\#\text{cut edges}] = |E|/2 \rightarrow \mathbb{E}[\#\text{uncut edges}]$
- $\Pr[\# \text{uncut edges} \ge \frac{|E|}{2}(1+\varepsilon)] \le \frac{1}{1+\varepsilon}$
- $\Pr[\#\text{cut edges} \leq \frac{|E|}{2}(1-\varepsilon)] \leq \frac{1}{1+\varepsilon} \leq 1-\varepsilon/2$
- With probability at least $\varepsilon/2$ we have $\frac{2}{2}$ approximation

APPROXIMATION GUARANTEE

- $\mathbb{E}[\#\text{cut edges}] = |E|/2 \rightarrow \mathbb{E}[\#\text{uncut edges}]$
- $\Pr[\#\text{uncut edges} \ge \frac{|E|}{2}(1+\varepsilon)] \le \frac{1}{1+\varepsilon}$
- $\Pr[\#\text{cut edges} \leq \frac{|E|}{2}(1-\varepsilon)] \leq \frac{1}{1+\varepsilon} \leq 1-\varepsilon/2$
- With probability at least $\varepsilon/2$, we have $\frac{2}{1-\varepsilon}$ -approximation
- Ex. $\varepsilon=1/100$: with probability at least 1/100, we have 2.03-approximation

New o'gonition

• Pick independent uniform subsets $S_1, \ldots, S_k \subseteq V$

• Pick independent unifrom subsets $S_1, \ldots, S_k \subseteq V$

Cooks at the

• Output the subset with maximum cut $\delta(S_i)$

- Pick independent unifrom subsets $S_1, \ldots, S_k \subseteq V$
- Output the subset with maximum cut $\delta(S_i)$
- $\Pr[\max \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)]$

- Pick independent unifrom subsets $S_1, ..., S_k \subseteq V$
- Output the subset with maximum cut $\delta(S_i)$
- $\Pr[\max \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)] = \Pr[\text{all } \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)]$

- Pick independent unifrom subsets $S_1, \ldots, S_{\underline{k}} \subseteq V$
- Output the subset with maximum cut $\delta(S_i)$

•
$$\Pr[\max \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)] = \Pr[\text{all } \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)]$$

$$\leq (1-\varepsilon/2)^k$$

- Pick independent unifrom subsets $S_1, \ldots, S_k \subseteq V$
- Output the subset with maximum cut $\delta(S_i)$

•
$$\Pr[\max \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)] = \Pr[\text{all } \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)]$$

$$\leq (1-\varepsilon/2)^k \leq e^{-\varepsilon k/2}$$

$$e^{\times} = 1+x \times \frac{\sqrt{2}}{2} \times ---$$

$$e^{\times} \geq 1+x \times \frac{\sqrt{2}}{2} \times -\frac{\varepsilon}{2}$$

$$(1-\frac{\varepsilon}{2}) \leq e^{-\varepsilon/2} = > (1-\frac{\varepsilon}{2})^k \leq e^{-\varepsilon k/2}$$

- Pick independent unifrom subsets $S_1, \ldots, S_k \subseteq V$
- · Output the subset with maximum cut $\delta(S_i)$ on the subset with maximum cut $\delta(S_i)$ good and
- $\Pr[\max \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)] = \Pr[\text{all } \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)]$ $\leq (1-\varepsilon/2)^k \leq e^{-\varepsilon k/2} \leq \frac{1}{10^{10}n} \text{ for } k = \frac{2\ln n + 50}{\varepsilon}$

$$e = \frac{1}{10^{10} \cdot n}$$
on $f_{pm} + s = \frac{2}{10^{10} \cdot n}$

$$e_{pm} + s = \frac{1}{10^{10} \cdot n}$$

- Pick independent unifrom subsets $S_1, \ldots, S_k \subseteq V$
- Output the subset with maximum cut $\delta(S_i)$
- $\Pr[\max \delta(S_i) \le \frac{|E|}{2}(1-\varepsilon)] = \Pr[\text{all } \delta(S_i) \le \frac{|E|}{2}(1-\varepsilon)]$ $\le (1-\varepsilon/2)^k \le e^{-\varepsilon k/2} \le \frac{1}{10^{10}n} \text{ for } k = \frac{2\ln n + 50}{\varepsilon}$
- We have $\frac{2}{1-\varepsilon}$ -approximation with probability $1-\frac{1}{10^{10}n}$

 Randomized algorithm may be faster and simpler

- Randomized algorithm may be faster and simpler
- For some tasks randomness is necessary

- Randomized algorithm may be faster and simpler
- For some tasks randomness is necessary
- We can go from expectation to probability via Markov's inequality

- Randomized algorithm may be faster and simpler
- For some tasks randomness is necessary
- We can go from expectation to probability via Markov's inequality
- We can amplify probability of success by independent repetitions