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RANDOMIZED ALGORITHMS

- Randomized algorithm may be faster and
simpler

- For some tasks randomness is necessary

- We'll use randomized algorithms in virtually all
following topics
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REVIEW OF PROBABILITY THEORY

- Sample Space Q.
Q=1{1,2,3,4,56}; Q={HH,HT,TH,TT}

c EventAC Q. A={2,4,6}; A= {TT,TH}

+ Probability measure: VA, Pr(A) € [0, 1]

- Pr(2) =1

© A1, Ay, ..o are disjoint: PrlUAi] = > PrlAj]

.ATZ HHIaAQZﬂ_};

PI’[A1 UAz] = PF[AJ] + PI’[Az]
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INDEPENDENT EVENTS

- Ay and A, are independent Iff
PI’[A1 ﬂAz] = PF[A1] y Pr[Az]
- Ay =A{1stdieis 6}, A, = {2nd die Is 6}

Pr[A] = 1/6: Pr[A] =1/6; Pr[A;NAy] =1/36

- A= {l1st die is 1}, A2 {sum of two dice Is 2}

PriA] = 1/6; PrlA)] =1/36; PriA;NA;] = 1/36
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RANDOM VARIABLE

- Result of experiment Is often not event but
number

- Random variable X: Q - R

- Toss three coins, X = number of heads

- Throw two dice:

Y = sum of numbers, Z = max of numbers
- Expected value E[X] = > Prlxj| - X;

- Throw a die, X = the number you're getting
Xy

£ 1
E[)q:6m+€°2+'”+_'6:3‘5
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CLOUD SYNC

- Synchronize local files to the cloud
- Has file been changed? File length: n bits
- Algorithm: send n bits

- Can send n — 1 bits?
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CLOUD SYNC. LOWER BOUND

No algorithm can solve the problem by sending
n—1Dhbits

Randomized algorithm can solve the problem
by sending = log n bits!

h —> (egwm
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RANDOMIZED ALGORITHM

local file
1 0O 0 1 1 0 1 T 0 O
ae{0,...,2" -1}
Pick random
a mod p orime p €
FO iff {2,3,...,100n*log n}
a=b modp 4
be{0,...,2" -1}
1 O 0 1 1 1 1 T 0 O

(0, P\ 280, CLOUE Ale Bbids = Cog (100 op)

2 logloo * Clegu+ "ft"f"
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- If a # b, how often do we output EQ?
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ANALYSIS

- If a = b, then forevery p,a=b mod p. We
always output EQ!

- If a # b, how often do we output EQ?

- a—b=0 mod p.
2">a—b=p-py---pp>2F pe 2,3, loontlspu}

* Prime Number Theorem: there are =~ N/ IogN
prime numbers in the interval {2,3,...,N}

Nz oowtegn, foe # o primis 2 10000
041(4, n ouf gf 1060u? [l leod Yo epruoe
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ANALYSIS

- If a = b, then forevery p,a=b mod p. We
always output EQ!

- If a # b, how often do we output EQ?

- a—b=0 mod p.
2">a—b=p;-py---pp>2°

* Prime Number Theorem: there are =~ N/ Iogﬂ/
prime numbers in the interval {2,3,...,N}

+ With probability &~ 1 — =1 the output is
correct
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LINEARITY OF EXPECTATION
E[X+Y]?
EX+ Y] =) LjPX=xn0Y=y]-(x+Y)
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/
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i J
+§:yj$:Pr[X:X,ﬂY:yj]
J i
— ZX,‘PI’[X:X,'] + ZijPr[Y: yj]
i J i
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- One die: E[X] =3.5
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LINEARITY OF EXPECTATION

- One die: E[X] =3.5
- Five dice? E[X1 —|—X2 —|—X3 —|—X4 —|—X5]?

- By linearity of expectation:

.E[X1 + Xo + X3+ Xo + XL;J
= EPG] LEPG] + BRG] £ E[Xy] + E[Xs]

=5.35=1/5
—




BREAK

- Alice and Bob have (unusual) dice
- Numbers on Alice’'s dieare 2, 2,2, 2,3, 3
- Numbers on Bob'sdieare1,1,1,1,6, 6

- Alice and Bob throw their dice; the one with
the larger number on the die wins

- Whose die has larger expected number? Bob

- Who wins with higher probability? Aliee
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MAaxiMmuMm CUT

- Undirected graph G, vertices V, edges E

- Bipartition of V that maximizes the number of
edges crossing the partition

- Bipartition: SCV,SCV
- Cuté(S)={(u,v)eE:ueS,veS}
- Max-CUT: mang/é(S)

- NP-hard to solve exactly
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RANDOMIZED APPROXIMATION

-+ Qutput a random subset S C V

- In other words, add each vertexvin S
Independently with probability 1/2

- Each edge (u, V) Is cut with probability [ /2

»
¢ (]

Coab;.
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ANALYSIS

+ Xyv =11 (u,v) Is cut, X, , = 0 otherwise
+ Xyv = 1 with probability 1/2

EL)(u,vj L. 4xt-0 =



ANALYSIS

+ Xyv =11 (u,v) Is cut, X, , = 0 otherwise
+ Xyv = 1 with probability 1/2
° E[Xu7v] — 1/2



ANALYSIS

]Xu ;= ﬂnc u,Vv lIS cut \XUV = 0 otherwise

Xuy = 1 with probability 1/2
- E[Xy ] =1/2
- Number of cut edges




ANALYSIS

+ Xyv =11 (u,v) Is cut, X, , = 0 otherwise
+ Xyv =1 with probability 1/2

¢ [E[Xu7v] — 1/2
- Number of cut edges

L.‘mul—, 0f
Z Xuv éxppchhon
(u,v)ek
H edpes
Expected number of ¢ / o Y §reph

B[ Y Xl = 3 Elud = E]/2

(u,v)eE (u,v)eE
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2-APPROXIMATION

+ Max-CUT: OPT < |E]|
- Our algorithm: E[6(S)] > |E|/2

. E[5(S)] > OPT /2

/




2-APPROXIMATION

+ Max-CUT: OPT < |E]| PM'»”"""J
7 :
- Our algorithm: E[6(S)] > |E|/2 /””‘?f:“:uﬁ
in a,u,,-.(-l"“\
= O,"'wo'o‘l-dl'"“' by pot Hh
- E[6{S)] = OPT /2 g0od.

- Can we have algorithm that always outputs
6(S) > OPT /27
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MARKOV’'S INEQUALITY

Theorem
If X Is non-negative random variable*, then

PriX > a] < [X]

Examples:

PrX > 2E[X]] < %

a= SECXT
]
PriX > SE] < ¢
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Problem

A lottery ticket costs 10 dollars. A 40% of a lottery
budget goes to prizes. Show that the chances to win
500 dollars or more are less than 1%

LOTTERY BUDGET

- Assume the contrary: the probability to win 500
dollars or more Is at least 0.01

- Denote the number of tickets sold by n

- Then the budget of the lottery is 10n dollars

- 10n x 0.4 = 4n dollars are spent on the prizes

- By our assumption at least@tickets win at

least]

| c—

500

dollars
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LOTTERY BUDGET

Problem

A lottery ticket costs 10 dollars. A 40% of a lottery
budget goes to prizes. Show that the chances to win
500 dollars or more are less than 1%

e

- |In total these tickets win ﬁ x 500 = 5n dollars

- This exceeds the total prize budget of 41!

- Contradiction!
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GEOMETRIC PROOF
]Ef;zELx Prﬁgz(ﬂ

Suppose f takes values a, a,, as, a, with probabilities
P1, P2, P3, P4

Ef is the area of the
gray region
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Sup akes values a4, a,, as, a, with probabilities
p17p27p37p4

T Ef is the area of the
as — gray region

a x Pr[f > a] is the
area of the red
region
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GEOMETRIC PROOF

Y
Ef > a x Pr[f > d]
Suppose f takes values a, a,, as, a, with probabilities

P1, P2, P3; Pu ECX ?E}ED‘]] éé

AN

Ef is the area of the
as — gray region

a x Pr[f > a] is the
area of the red
region

The gray region Is
larger: the
) inequality follows

AW N

Py
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APPROXIMATION GUARANTEE

- E[#tcut edges] = |E[/2 — E[#funcut edges]
+ Pr[#uncut edges > @(1 +e)] <=
- Pr[#cut edges < @(1 —¢)] < ﬁ <1—¢/2

- With probability at least €/2, we have
~£-approximation

- Ex. e =1/100: with probability at least 1/100,

we have 2.03-approximation
—
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+ Output the subset with maximum cut §(S;)
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SUMMARY

- Randomized algorithm may be faster and
simpler

- For some tasks randomness is necessary

- We can go from expectation to probability via
Markov's inequality

- We can amplify probability of success by
Independent repetitions



