GEMS OF TCS

DATA STRUCTURES

Sasha Golovnev
February 9, 2021

DATA STRUCTURES

Stack, Queue, List, Heap

Search Trees

hash(unsigned x) {
X A= x >> (w-m);

| rewn peielie o H as h Ta b I.eS

COPING WITH HARD PROBLEMS

- Some problems are too hard to solve exactly

COPING WITH HARD PROBLEMS

- Some problems are too hard to solve exactly.

- Approximation

COPING WITH HARD PROBLEMS

- Some problems are too hard to solve exactly
- Approximation

- Randomness

COPING WITH HARD PROBLEMS

- Some problems are too hard to solve exactly
- Approximation
- Randomness

- Today: Preprocessing

EXAMPLES

- Graph Distances: Preprocess a road network in

order to efficiently compute distance queries

between cities

(Google Maps) P,zepwu%‘“s {akes Joneven
Q.MMS . Yoot

EXAMPLES

- Graph Distances: Preprocess a road network in
order to efficiently compute distance queries
between cities

(Google Maps)

- Clustering: Preprocess a set of movies in order
to efficiently find closest movie to a query
movie

(Netflix recommendations) }@
;

DATA STRUCTURES

EhEEEE
G G = = G o = G (= G
= ==
— o |ooo—|o[—]
O Of—|—|D]
——IOI0|S[9
O O[O O[]
O OO
EEE SOl M
O|O[— O]]
=t b [=) (@)@ [@]
‘-
OO O
S oe~ -t~
Of— |||
O[]
=
E= | +
O] O[O O 0
Sl—olo—o—o0| ad
O[] =
ErEEEE
OO ||| O[]
—[— o oo——c[o| “
e = G
CrerrEtEEEEE
= Sl=oloo)
S|
] OO
—|O|o|Io|o— o9
CEEEEEEEEE
SR EEEE
O OO Of—[— |
L[[t O (@) [(@) o (@)
O[] =
O
—| O[O
O|O|—|O|O|O|
—|S[olo[oIo[— o~ g
O[O
[—| O —| O —| O O—|O| O} n
||| || o m—
O[] = S
b () o B) [[(@) (@)
S[——[o—] (0p)]
[+ Of—|O[O]
—— oo —o|o—]9 e
OO |O|O| C
EEEEEEEEEE
EEEEEE= O
O OO || O —| O[]
EEEEEEEEEE r
.
S Sl (@
O[]
N D)
EeaEEEEEEE |
O[O || [=
= O [O|O DI
SO — oo
— ||| O —| O |||} Q
—|O— O]
—[O| > [@) (=) T —
i O
S oIo— o010
=
== =
— oo o [oo——]

DATA STRUCTURES

€S

Quer

10

G G = = G o = G (= G
= E=E=
— ||| OO |||
O Of—|—|D]
EEEEEE
O O[O O[]
O OO
—|—|)] O—|O]
O|O[—|O]]
O[S
O O
= Gl G =) Gl =) Gl =) (=
Of— |||
O[]
=
OO =
O] O[O O
OO —[— O[]
O[] =
([[b [[@) B e o By
OO ||| |||
i
O O|O|0|1O| 1O ||
(] [e (o] (o) o e Loy (@) (@)
= Sl=oloo)
S|
[=
—[olololo o ——|ol|
([[(o] B B o] (@) By [@)
OO 0|0 |||
cecEEEEEEE
L[[t O (@) [(@) o (@)
O[] =
O
—| O[O
O|O|—|O|O|O|
| OO O[O g
O[O
[—| O —| O —| O O—|O| O} n
[[| o m—
O[] = S
|| Of—|— || O|O|O| O
S[——[o—] (0p)]
[+ Of—|O[O]
—[— oo oo e
O[O OO
e C
EEEEEE= O
O OO || O —| O[]
[—|O|O|O) —|O|O|—| O} r
.
S S (@R
O[]
o o D)
EeaEEEEEEE |
[[« (@) G (@) [=
= O [O|O DI
= G G =) Gl o =) G = G
— ||| O —| O |||}
—|O—|O)
—|O] > [@) (=)
i O
ool ——[oloo—
=
== =
— oo o [oo——]

DATA STRUCTURES

€S

Quer

New York — Washington

Sl o000
—[— O[OS
= E=E=
— ||| OO |||
O Of—|—|D]
EEEEEE
O O[O O[]
O OO
—|—|)] O—|O]
O|O[—|O]]
O[S
O O
= Gl G =) Gl =) Gl =) (=
Of— |||
O[]
=
== |
O] O[O O
OO —[— O[]
O[] =
([[b [[@) B e o By
OO ||| |||
i
O O|O|0|1O| 1O ||
[[[[T] B (o) @)
= Sl=oloo)
S|
—[—] O[O
SEEEEEEEEE
([[(o] B B o] (@) By [@)
OO 0|0 |||
EeEEE ==
L[[t O (@) [(@) o (@)
O[] =
O
—| O[O
O|O|—|O|O|O|
| OO O[O g
O[O
[—| O —| O —| O O—|O| O} n
[[| o m—
O[] = S
O O () B B (@) [(@) (@) [
S——o—] (0p)]
[+ Of—|O[O]
EEEeEEEEEE e
(@) (@ G (@) (@) by
EEEEE C
EEEEEE= O
O OO || O —| O[]
SEEEEEEEEE | -
.
S S (@R
O[]
o o D)
[=[] o b |
[[« (@) G (@) [=
= SO0 Dl
= G G =) Gl o =) G = G
— ||| O —| O |||}
—| O[O
—[S] > [@) (=)
i O
O[O~ |o|o|o[—
=
O| OO [=
— oo o [oo——]

DATA STRUCTURES

€S

Quer

New York — Washington
o5

Sl o000
—[— O[OS
= E=E=
— ||| OO |||
O Of—|—|D]
EEEEEE
O O[O O[]
O OO
—|—|)] O—|O]
O|O[—|O]]
O[S
O O
= Gl G =) Gl =) Gl =) (=
Of— |||
O[]
=
== |
O] O[O O
OO —[— O[]
O[] =
([[b [[@) B e o By
OO ||| |||
i
O O|O|0|1O| 1O ||
[[[[T] B (o) @)
= Sl=oloo)
S|
—[—] O[O
SEEEEEEEEE
([[(o] B B o] (@) By [@)
OO 0|0 |||
EeEEE ==
L[[t O (@) [(@) o (@)
O[] =
O
—| O[O
O|O|—|O|O|O|
| OO O[O g
O[O
[—| O —| O —| O O—|O| O} n
[[| o m—
O[] = S
O O () B B (@) [(@) (@) [
S——o—] (0p)]
[+ Of—|O[O]
EEEeEEEEEE e
(@) (@ G (@) (@) by
EEEEE C
EEEEEE= O
O OO || O —| O[]
SEEEEEEEEE | -
.
S S (@R
O[]
o o D)
[=[] o b |
[[« (@) G (@) [=
= SO0 Dl
= G G =) Gl o =) G = G
— ||| O —| O |||}
—| O[O
—[S] > [@) (=)
i O
O[O~ |o|o|o[—
=
O| OO [=
— oo o [oo——]

DATA STRUCTURES

Queries

Washington — Boston

New York — Washington

Sl o000
G G = = G o = G (= G
= E=E=
O o (] o [[() Co) B
O Of—|—|D]
EEEEEE
O O[O O[]
O OO
—|—|)] O—|O]
O|O[— O]]
O[S
OO O
= Gl G =) Gl =) Gl =) (=
Of— |||
O[]
=
OO =
O] O[O =
OO —[— O[]
O[] =
([[b [[@) B e o By
OO ||| |||
i
O[OS
[[[[T] B (o) @)
— e
O[]
| O[O
—[olololo o ——|ol|
([[(o] B B o] (@) By [@)
= G
O] O[O O[O0 ||
L[[t O (@) [(@) o (@)
O[] =
O
—| O[O
O|Of—|O|O|O||
— OIS
O[O
O (=] G () o () (@] o (@) (@)
Gl G (= Gl G =) (= G (= =)
O[] =
|| Of—|— || O|O|O| O
S]]
— EESE
—[— oo oo
O[O OO
.
EEEEE=E
= = = o)) o = o
[) o) o)t o) [e) i (@]
.
S[—[S] S|
EEEEE
=S|
OO |O|O0|10|10|1O|— |
[[« (@) G (@) [=
O O[]
= G G =) Gl o =) G = G
OO || |||
—|O— O]
—|O] > [@) (=)
i O
ool ——[oloo—
=
== =
— oo o [oo——]

Stealing Passwords

PASSWORD HASHING

login/pwd

R login/pwd M

PASSWORD HASHING

havelbeenpwned.com:
Your account has

been compromised
login/pwd
R login/pwd M

PASSWORD HASHING

login/hash(pwd)

R login/pwd M

PASSWORD HASHING

login/hash(pwd)

R login/pwd M

hash(qwerty)=1xe4ht
hash(111111)=nh8310

PASSWORD HASHING

havelbeenpwned.com:
Your account has

been compromised
@ login/hash(pwd)
R login/pwd M

hash(qwerty)=1xe4ht
hash(111111)=nh8310

HASHING
PWO'
- (Cryptographic) hash function mapsﬂgg to
slf'ﬂhgs such that it's hard to invert
ol in onolen ‘(0}‘"’“ PWJ 4}"“. bast,

IJ““S
) You Leve Lo bhuuls ponce all })wol;

HASHING

- (Cryptographic) hash function maps strings to
strings such that it's hard to invert

- |deally, to find a password that leads to a fixed
hash value, one needs to brute force all
possible passwords

HASHING

- (Cryptographic) hash function maps strings to
strings such that it's hard to invert

- |deally, to find a password that leads to a fixed
hash value, one needs to brute force all
possible passwords

- Hash functions are publicly known (SHA-3)
wilth popt -

HASHING

- (Cryptographic) hash function maps strings to
strings such that it's hard to invert

- |deally, to find a password that leads to a fixed
hash value, one needs to brute force all
possible passwords

- Hash functions are publicly known (SHA-3)

- For now, consider hash functions

fo{1...,N} = {1,..., N} that are bijections
oy e Ne2 ()

INVERTING A BIJECTION

- Letf: {1,....N} = {1,...,N} be a bijection

2

N=2"=10"

Pu wocede 9"%‘ K
P hash — P“’d
0....0 —7 pwe,

O._.01 = /?‘\/J'z

Iy

'\ ¢] L) ';>‘7

g[)aae = N o 1027
e ::.(,ogA/

+ aF el Fak-/.‘c[eg ,‘qubgppvqlﬂe
Uuiveuce = (O

INVERTING A BIJECTION

- Letf: {1,....N} = {1,...,N} be a bijection

- Invert it in time T=+/N and space S = v/N

Dinected Cn.wpla with NV"‘"‘“—S’
e gy N il

v/v “(9'5

x€ef1._ Nj

INVERTING A BIJECTION

- Letf: {1,....N} = {1,...,N} be a bijection
- Invert it in time T=+/N and space S = v/N

- Let's define a directed graph on N vertices with

edges x — f(x
) ou+~J¢ghu =1

m-Jng& (7‘) i

A,

INVERTING A BIJECTION

- Letf: {1,....N} = {1,...,N} be a bijection
- Invert it in time T=+/N and space S = v/N

- Let's define a directed graph on N vertices with
edges x — f(x)

-+ In- and out-degrees
of all vertices are 1

INVERTING A BIJECTION

- Letf: {1,....N} = {1,...,N} be a bijection
- Invert itin time T = +/N and space S = v/N

- Let's define a directed graph on N vertices with
edges x — f(x)

- In- and out-degrees {:}
of all vertices are 1 Q
- Thus, this graph Is a Q

union of cycles

INVERTING A BIJECTION

INVERTING A BIJECTION

INVERTING A BIJECTION

INVERTING A BIJECTION

INVERTING A BIJECTION

VN

INVERTING A BIJECTION

VN

Store x land-
marks,

INVERTING A BIJECTION

Store x land- VI
marks,
and links) to

previous land-
marks VN

INVERTING A BIJECTION

-
Store x land- VI
marks

’ N
and links) to VN
previous land-
marks VN
space S~ /N

VN

INVERTING A BIJECTION

Store x land-

marks,

and links) to

previous land-
marks

space S~ VN

INVERTING A BIJECTION

Store x land-

marks,

and links) to

previous land-
marks

space S~ VN
time T ~ v/N:

INVERTING A BIJECTION

Store x land-
marks,
and links) to

previous land-
marks

space S~ VN
time T~ +/N:

Invert y = f(x)
8?%% k\nsh, ;—ivJ V\-'d

INVERTING A BIJECTION
Recaell F ;8 P“’)"‘c“j le o 1y

Store x land-

marks,

and links) to

previous land-
marks

space S~ VN
time T~ v/N:

Invert[y]= f(x)

INVERTING A BIJECTION

Store x land-
marks,
and links) to

previous land-
marks i

space S~ VN

time T~ V/N:
Invert y = f(x)

INVERTING A BIJECTION

Store x land-
marks,
and links) to

previous land-
marks

space S~ VN

time T~ V/N:
Invert y = f(x)

INVERTING A BIJECTION

Store x land-
marks,
and links) to

previous land-
marks

space S~ VN

time T~ V/N:
Invert y = f(x)

INVERTING A BIJECTION
’—J;(?‘)
WMF

Store x land-
marks,
and links@to

previous land-
marks

space S~ VN

time T~ V/N:
Invert y = f(x)

INVERTING A BIJECTION

Store x land-
marks,
and links) to

previous land-
marks

space S~ VN

time T~ V/N:
Invert y = f(x)

INVERTING A BIJECTION

Store x land-
marks,
and links) to

previous land-
marks

space S~ VN

time T ~
Invert y = f(x)

DATA STRUCTURE

a"”u' ol
9 " —_ N
) /_' E ». g‘” ? ! =N
- LetST=N

DATA STRUCTURE

- LetST=N

- Let's define a directed graph on N vertices with
edges x — f(x)

DATA STRUCTURE

- LetST=N

- Let's define a directed graph on N vertices with
edges x — f(x)

. Partition the graph into cycles Q O

DATA STRUCTURE

- LetST=N

- Let's define a directed graph on N vertices with
edges x — f(x)

- Partition the graph into cycles
grap y fp SR

- lgnore cycles of length < T 7N\ FEG)
— %@x

DATA STRUCTURE

- LetST=N

- Let's define a directed graph on N vertices with
edges x — f(x)

- Partition the graph into cycles
- Ignore cycles of length < T

- In all other cycles store every Tth vertex as

a landmark
|

DATA STRUCTURE

founvtons ’7«4'9',';14.'9

. Let ST=N W canfully ot
hasth valul

- Let's define a directed graph on N vertices with
edges x — f(x)

- Partition the graph into cycles
- Ignore cycles of length < T

- In all other cycles store every Tth vertex as

a landmark Paivbows dables
. Space: S, query time: T oHacks

Now ust '4391' ;'Mc"iouh ‘7;3 M

Prohibited Passwords

PROHIBITED PASSWORDS

- Check If entered password is in the list of m
prohibited passwords

PROHIBITED PASSWORDS

- Check If entered password is in the list of m
prohibited passwords

- We can store m strings, check in ~ logm time

PROHIBITED PASSWORDS

- Check If entered password is in the list of m
prohibited passwords

- We can store m strings, check in ~ logm time
N\ \01-‘-»3 infonmgtrom

- Bloom filters: store ~ m bits, check in O(1)
time

PROHIBITED PASSWORDS

- Check If entered password is in the list of m
prohibited passwords

- We can store m strings, check in ~ logm time

- Bloom filters: store ~ m bits, check in O(1)
time

- We'll be wrong with small probability

DATA STRUCTURE

- We want a data structure that supports two
functions

DATA STRUCTURE

- We want a data structure that supports two
functions probibited pud

- Insert(x

DATA STRUCTURE

- We want a data structure that supports two

functions Naive: list of ,,..,u'z,..u
Pw’

- Insert(x) oald wpp oo wmects

- Lookup(x) Ipace

Lookep would he less
efficism |

DATA STRUCTURE

- We want a data structure that supports two
functions

- Insert(x)
- Lookup(x) Aot mlogm bils

: Hgshtables: less efflcient but don't make
mistakes

we'he le-m.'l«, 2w bids

DATA STRUCTURE

- We want a data structure that supports two
functions

- Insert(x) &
- Lookup(x) ¥

- Hashtables: less efficient but don’t make
mistakes

- Bloom fitler will use array of n bits
A[O],...,A[n — 1], initialized with zeros

DATA STRUCTURE

- We want a data structure that supports two
functions

- Insert(x)
- Lookup(x)

- Hashtables: less efficient but don’t make
mistakes

- Bloom fitler will use array of n bits
A[O],...,A[n — 1], initialized with zeros

- We'll use kR = O(1) hash functions

HASH FUNCTIONS

Pnolﬂ’ﬁwp‘uo']
\
- We have k hash functions f4, ..., fr from strings

tO {O, c ey N — 1} _;.,fpj.uts

HASH FUNCTIONS

- We have k hash functions f4, ..., fr from strings
to {0,...,n—1}

- Assume that functions are independent and
uniform random eizz;l/g Pe

v pd x /i
\ Y

nA g

BLOOM FITLER

i
- Insert(x):
- fori=1,...,R
A 1

}\(")

whetor 04w3 se + 401

hit

i @

}

0 AL

g

)

/..‘,. f}r)

o ()

n-\

- Insert(x):
- fori=1,...,R .
- A[fi(x)] 1 o 12) (10 |
- Lookup(x): -

BLOOM FITLER

- return 1 iff for every 1 =1, .

Obs;

PM b(?hu;:

Alf(X)] = 1 j}:,;;’

X wa; hsuv\(“’ 100““7@ ju(?‘)
unucﬂj 3“‘}; % is v date 9{"‘“"

R

PM ,)‘Cw

ANALYSIS

3 W.?y‘o'. "”ﬁ"’lfJ

Loal«vf(:f) w»au} Goune bivas s Sos)

X was :ug,.,

NN

| 1] ,W

Ea KOs+ r§
o .
H OF |7WOLvi h: J'Z—J Pwalf

N - # 0}: b:ts in OF
E B ’# 0; ash }(Ah:‘bj

P of wistall

‘ZZMFVL% 0"‘4&1 24

AM/.,SQ;S \Lo Qe+ Pamms

n k.

We vt jeented all m ?'/-n/f?’va
Pp LA LOX=01 =/
Tuseet st ped ’

51 P gy AL =

S = Pr CAB)I:}:\P%)

~ —_— =

m 1h | VWJ
35 Vﬂ EAID}
| 2ozl
F o

Pp CALOT=00 = (1Y)

~Yin
DRV a4
<l /V') mle "/v»> .
P = (l"n) ~ @ -
-mK/V)
4
— ?
e of e:m:: o Ip

all | lash values heppes
do he oOwnes

Po Lernor(= U'P)K

22um — 52 bn‘;sjwwmj
V‘\ =

— ~4
k = 2 ;«_
Pe [erwoe o)0
(2

