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DATA STRUCTURES

Stack, Queue, List, Heap

Search Trees

hash(unsigned x) {
X A= x >> (w-m);
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COPING WITH HARD PROBLEMS

- Some problems are too hard to solve exactly
- Approximation
- Randomness

- Today: Preprocessing
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- Graph Distances: Preprocess a road network in

order to efficiently compute distance queries
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EXAMPLES

- Graph Distances: Preprocess a road network in
order to efficiently compute distance queries
between cities

(Google Maps)

- Clustering: Preprocess a set of movies in order
to efficiently find closest movie to a query
movie

(Netflix recommendations) }@
;
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Stealing Passwords



PASSWORD HASHING

login/pwd

R login/pwd M




PASSWORD HASHING

havelbeenpwned.com:
Your account has

been compromised
login/pwd
R login/pwd M
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PASSWORD HASHING

login/hash(pwd)
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PASSWORD HASHING

havelbeenpwned.com:
Your account has

been compromised
@ login/hash(pwd)
R login/pwd M

hash(qwerty)=1xe4ht
hash(111111)=nh8310




HASHING
PWO'
- (Cryptographic) hash function mapsﬂgg to
slf'ﬂhgs such that it's hard to invert
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HASHING

- (Cryptographic) hash function maps strings to
strings such that it's hard to invert

- |deally, to find a password that leads to a fixed
hash value, one needs to brute force all
possible passwords

- Hash functions are publicly known (SHA-3)

- For now, consider hash functions

fo{1...,N} = {1,..., N} that are bijections
oy e Ne2 ()




INVERTING A BIJECTION

- Letf: {1,....N} = {1,...,N} be a bijection
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INVERTING A BIJECTION

- Letf: {1,....N} = {1,...,N} be a bijection

- Invert it in time T=+/N and space S = v/N

Dinected Cn.wpla with NV"‘"‘“—S’
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INVERTING A BIJECTION

- Letf: {1,....N} = {1,...,N} be a bijection
- Invert it in time T=+/N and space S = v/N

- Let's define a directed graph on N vertices with

edges x — f(x
) ou+~J¢ghu =1
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INVERTING A BIJECTION

- Letf: {1,....N} = {1,...,N} be a bijection
- Invert it in time T=+/N and space S = v/N

- Let's define a directed graph on N vertices with
edges x — f(x)

-+ In- and out-degrees
of all vertices are 1



INVERTING A BIJECTION

- Letf: {1,....N} = {1,...,N} be a bijection
- Invert itin time T = +/N and space S = v/N

- Let's define a directed graph on N vertices with
edges x — f(x)

- In- and out-degrees {:}
of all vertices are 1 Q
- Thus, this graph Is a Q

union of cycles
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Store x land-
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and links ) to

previous land-
marks

space S~ VN
time T ~ v/N:



INVERTING A BIJECTION

Store x land-
marks,
and links ) to

previous land-
marks

space S~ VN
time T~ +/N:

Invert y = f(x)
8?%% k\nsh, ;—ivJ V\-'d



INVERTING A BIJECTION
Recaell F ;8 P“’)"‘c“j le o 1y

Store x land-

marks,

and links ) to

previous land-
marks

space S~ VN
time T~ v/N:

Invert[y]= f(x)
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Invert y = f(x)
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Store x land-
marks,
and links ) to

previous land-
marks

space S~ VN

time T~ V/N:
Invert y = f(x)
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space S~ VN

time T~ V/N:
Invert y = f(x)
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Store x land-
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and links ) to

previous land-
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Invert y = f(x)



INVERTING A BIJECTION

Store x land-
marks,
and links ) to

previous land-
marks

space S~ VN

time T ~
Invert y = f(x)
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- Let's define a directed graph on N vertices with
edges x — f(x)
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DATA STRUCTURE

- LetST=N

- Let's define a directed graph on N vertices with
edges x — f(x)

- Partition the graph into cycles
grap y fp SR

- lgnore cycles of length < T 7N\ FEG)
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DATA STRUCTURE

- LetST=N

- Let's define a directed graph on N vertices with
edges x — f(x)

- Partition the graph into cycles
- Ignore cycles of length < T

- In all other cycles store every Tth vertex as

a landmark
|



DATA STRUCTURE

founvtons ’7«4'9',';14.'9

. Let ST=N W canfully ot
hasth valul

- Let's define a directed graph on N vertices with
edges x — f(x)

- Partition the graph into cycles
- Ignore cycles of length < T

- In all other cycles store every Tth vertex as

a landmark Paivbows dables
. Space: S, query time: T oHacks
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PROHIBITED PASSWORDS

- Check If entered password is in the list of m
prohibited passwords

- We can store m strings, check in ~ logm time

- Bloom filters: store ~ m bits, check in O(1)
time

- We'll be wrong with small probability
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- We want a data structure that supports two

functions Naive: list of ,,..,u'z,..u
Pw’

- Insert(x) oald wpp oo wmects
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DATA STRUCTURE

- We want a data structure that supports two
functions

- Insert(x)
- Lookup(x) Aot mlogm bils

: Hgshtables: less efflcient but don't make
mistakes

we'he le-m.'l«, 2w bids
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functions

- Insert(x) &
- Lookup(x) ¥

- Hashtables: less efficient but don’t make
mistakes

- Bloom fitler will use array of n bits
A[O],...,A[n — 1], initialized with zeros



DATA STRUCTURE

- We want a data structure that supports two
functions

- Insert(x)
- Lookup(x)

- Hashtables: less efficient but don’t make
mistakes

- Bloom fitler will use array of n bits
A[O],...,A[n — 1], initialized with zeros

- We'll use kR = O(1) hash functions



HASH FUNCTIONS
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- We have k hash functions f4, ..., fr from strings
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HASH FUNCTIONS

- We have k hash functions f4, ..., fr from strings
to {0,...,n—1}

- Assume that functions are independent and
uniform random eizz;l/g Pe
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BLOOM FITLER

i
- Insert(x):
- fori=1,...,R
A 1
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- Insert(x):
- fori=1,...,R .
- A[fi(x)] 1 o 12) (10 |
- Lookup(x): -

BLOOM FITLER

- return 1 iff for every 1 =1, .
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