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- Efficient algorithms for important problems?

- For many of them, we couldn’t find better
algorithms in decades

- Today: Identify reason why we're stuck
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+ SAT can be solved in time 2" poly(n)

- We don't know how to solve SAT exponentially
faster: in time 1.999"

- Strong Exponential Time Hypothesis (SETH)
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CONJECTURED HARDNESS

- A conjecture for each problem?

- One conjecture to rule them all?

- Fine-grained Complexity: Better-than-known

algorithms for@@ne problam would imply
better-than-kpdwn algorithms for other SAT

Ty s wa”m Caueet b2 sol ved oy Jagter
W $ivg Lk wown olponiflue Hec bwsqrees



Orthogonal Vectors (OV)



ORTHOGONAL VECTORS PROBLEM
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ORTHOGONAL VECTORS PROBLEM

- S, T are sets of N vectors from {0, 1}9. Are there
seSandteTsuchthats-t=35"7 5.t =07

- Think of d = log® N
- Cansolve intime d - N? = Nt

- SETH implies that OV cannot be solved In
time N9
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- Glven a SAT formula ¢, split its n input
variables into two sets of size n/2
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SETH — 0OV

- Glven a SAT formula ¢, split its n input
variables into two sets of size n/2

- For each assignment to the first group — a
vector in S, for each assignment to the

second — avectorinT
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- Glven a SAT formula ¢, split its n input
variables into two sets of size n/2

- For each assignment to the first group — a
vector in S, for each assignment to the
second — avectorinT

- N =2"/2



SETH — 0OV
- For an assignment x € {0,1}"/2, add s € {0,1}"
to S:

s; = 11ff x doesn't satisfy clause C;
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- For an assignment x € {0,1}"/2, add s € {0,1}"
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- For an assignment x € {0,1}"/2, add s € {0,1}"
to S:

s; = 11ff x doesn't satisfy clause C;
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- For an assignment x € {0,1}"/2, add s € {0,1}"
to S:

s, ="1Iff x clause C;

- ¢ ISSAT Iffds e S, te T: SETH => P#”?

ViE{L...,m}: Xi-yi=20

- An |N1-99)algorithm for OV gives an algorithm
for SAT with run time
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DOMINATING SET

-+ k-Dominating Set: Given G = (V,E),|V| = n,
find an S C V,|S| = k such that

VweV:veSordueS: (v,u)eE

- For k > 7 solvable in n”

- SETH implies that k-DS cannot be solved in

time n* %% for any k
5.99
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Partition vars in kR groups:
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Partition vars in kR groups:
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SETH — DS

- For every k, we reduce SAT on n vertices kR-DS
with
~ 2N/R

vertices

- If R-DS on N vertices can be solved In time
/N’*—O-1 then SAT can be solved in time
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