GEMS OF TCS

FINE-GRAINED COMPLEXITY

Sasha Golovnev

February 16, 2021

FINE-GRAINED COMPLEXITY

Efficient algorithms for important problems?

FINE-GRAINED COMPLEXITY

· Efficient algorithms for important problems?

 For many of them, we couldn't find better algorithms in decades

FINE-GRAINED COMPLEXITY

· Efficient algorithms for important problems?

 For many of them, we couldn't find better algorithms in decades

Today: Identify reason why we're stuck

n variables 680,13 2" assignments

2-SAT O(m)
1-SAT O(m)

HARDNESS OF SAT

- SAT can be solved in time $2^n \operatorname{poly}(n)$
- We don't know how to solve SAT exponentially faster: in time 1.999ⁿ

HARDNESS OF SAT

- SAT can be solved in time $2^n poly(n)$
- We don't know how to solve SAT exponentially faster: in time 1.999ⁿ
- Strong Exponential Time Hypothesis (SETH)

```
SAT requires time 2<sup>n</sup>

SAT council be solved in time
O(2-E)^n \text{ for any } E>0
EQ: Any eg for SAT takes time \widetilde{\mathcal{N}}(2^n)
```

Edit Distance

Edit Distance

e l e p h a n t r e l e v a n t

Edit Distance

Edit Distance

elephant ATAGTACT relevant SATACACT

Edit Distance

elephant ATAGTACT relephant SATACACT
$$\widetilde{O}(n^2)$$
 dynamic programming als.

OTHER PROBLEMS

Longest Common Subsequence

Longest Edit Distance

Hamming Clos- All Pairs Max est Pair

Flow

RNA-Folding

Regular Expression Matching

Graph Diameter Subset Sum

CONJECTURED HARDNESS

A conjecture for each problem?

CONJECTURED HARDNESS

· A conjecture for each problem?

One conjecture to rule them all?

CONJECTURED HARDNESS

- · A conjecture for each problem?
- One conjecture to rule them all?
- Fine-grained Complexity: Better-than-known algorithms for one problem would imply better-than-known algorithms for other **SAT** problems

This problem cannot be solved any faster using known algorithmic techniques

Orthogonal Vectors (OV)

• S, T are sets of N vectors from $\{0,1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?

• S, T are sets of N vectors from $\{0,1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?

- S, T are sets of N vectors from $\{0,1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?
- Think of $d = \log^2 N$

• Can solve in time
$$d \cdot N^2$$

For SES

For LET

Check IF S and I are orthogonal d

- S, T are sets of N vectors from $\{0,1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?
- Think of $d = \log^2 N$
- Can solve in time $d \cdot N^2 \approx N^2$
- SETH implies that OV cannot be solved in time $N^{1.99}$

formula ϕ of SAT Algorithm for SAT sets of vectors S, T of OV Algorithm for OV no orthogonal vecthere are orthogotors in S, T nal vectors in S, T

 ϕ is unsatisfiable

Assume OV in time N1.9.3

$SETH \implies OV$

• Given a SAT formula ϕ , split its n input variables into two sets of size n/2

$SETH \implies OV$

- Given a SAT formula ϕ , split its n input variables into two sets of size n/2
- For each assignment to the first group a vector in S, for each assignment to the second a vector in T

hy x 241 -- Xn

$SETH \implies OV$

- Given a SAT formula ϕ , split its n input variables into two sets of size n/2
- For each assignment to the first group a vector in S, for each assignment to the second a vector in T
- $N = 2^{n/2}$

$SETH \implies OV$

• For an assignment $x \in \{0,1\}^{n/2}$, add $s \in \{0,1\}^m$ to S:

$SETH \implies OV$

• For an assignment $x \in \{0,1\}^{n/2}$, add $s \in \{0,1\}^m$ to S:

$$s_{i} = 1 \text{ iff } x \text{ doesn't satisfy clause } C_{i}$$

$$\bullet \text{ is SAT iff } \exists s \in S, t \in T:$$

$$\forall i \in \{1, \dots, m\}: \quad s_{i} \cdot d = 0$$

$$(x, \forall x_{n} \forall x_{2} \forall x_{n-1}) \text{ is } satisfiable$$

$$b_{i} \quad x_{i-1} \times x_{n} \quad o_{i} \quad x_{n} \in S_{n-1} \times x_{n}$$

$$0 \quad 0 \quad 0$$

$$\text{if } s \text{ not } sat \text{ if } both \text{ vectors } bave 1$$

$SETH \implies OV$

• For an assignment $x \in \{0,1\}^{n/2}$, add $s \in \{0,1\}^m$ to S:

$$s_i = 1$$
 iff x doesn't satisfy clause C_i

• ϕ is SAT iff $\exists s \in S, t \in T$:

$$\forall i \in \{1, ..., m\}: x_i \cdot y_i = 0$$
 $\emptyset = 2^{-1/2}$

• An N^{1.99} algorithm for OV gives an algorithm for SAT with run time

$$N^{1.99}$$

SETH \Longrightarrow OV

• For an assignment $x \in \{0,1\}^{n/2}$, add $s \in \{0,1\}^m$ to S:

$$s_i = 1$$
 iff x doesn't satisfy clause C_i

• ϕ is SAT iff $\exists s \in S, t \in T$: $SETH \Longrightarrow (P \neq NP)$

$$\forall i \in \{1,\ldots,m\}: x_i \cdot y_i = 0$$

• An $N^{1.99}$ algorithm for OV gives an algorithm for SAT with run time

$$= 7 \text{ refute SETH} = (2^{n/2})^{1.99} = 2^{0.995n}$$

$$= 7 \text{ refute SETH} = 7 \text{ you came up with a new olgonsthanic idea!!!}$$

The Dominating Set Problem

DOMINATING SET

For every K,

• *k*-Dominating Set: Given G = (V, E), |V| = n, find an $S \subseteq V, |S| = k$ such that

 $\forall v \in V : v \in S \text{ or } \exists u \in S : (v, u) \in E$

DOMINATING SET

• k-Dominating Set: Given G = (V, E), |V| = n, find an $S \subseteq V, |S| = k$ such that

$$\forall v \in V: v \in S \text{ or } \exists u \in S: (v, u) \in E$$

$$10-DS, it can be solved in time N$$

For $k \ge 7$, solvable in n^k New time (

N For iz in V

N For iz in V

N Check (in iz, --, in) is a DS?

N Check (in iz, --, in) is a DS?

DOMINATING SET

• *k*-Dominating Set: Given G = (V, E), |V| = n, find an $S \subseteq V, |S| = k$ such that

$$\forall v \in V : v \in S \text{ or } \exists u \in S : (v, u) \in E$$

- For k > 7, solvable in n^k
- SETH implies that k-DS cannot be solved in time $n^{k-0.01}$ for any k

SETH \Longrightarrow DS SAT with a vans x.-. > 4 K=10

$$\{x_1,\ldots,x_{n/k}\},\ldots,\{x_{n-n/k+1},\ldots,x_n\},|DS|=k$$

Given SATP => Graph G s.1.

P is satisfiable iff G has DS of size k

Partition vars in k groups:

$$\{x_1,\ldots,x_{n/k}\},\ldots,\{x_{n-n/k+1},\ldots,x_n\},|DS|=k$$

 $2^{n/k}$ vertices

$$\{x_1,\ldots,x_{n/k}\},\ldots,\{x_{n-n/k+1},\ldots,x_n\},|DS|=k$$

 $SETH \Longrightarrow DS$ takes exactly or

Partition vars in k groups:

$$\{x_1,\ldots,x_{n/k}\},\ldots,\{x_{n-n/k+1},\ldots,x_n\},|DS|=k$$

m vertices:

 $2^{n/k}$ vertices

2^{n/k} vertices

2^{n/k} vertices

SETH \Longrightarrow DS 1051=k must have 1 venter from each in b groups:

$$\{x_1,\ldots,x_{n/k}\},\ldots,\{x_{n-n/k+1},\ldots,x_n\},|\mathsf{DS}|=k$$

$$\text{iff ool satisfies Clause1}$$

$$m \text{ vertices:} \qquad 2^{n/k} \text{ vertices} \qquad 2^{n/k} \text{ vertices}$$

$$2^{n/k} \text{ vertices} \qquad 2^{n/k} \text{ vertices}$$

$$010 \qquad 001 \qquad 001 \qquad 001 \qquad 001 \qquad 000$$

$$011 \qquad 000 \qquad 011 \qquad 000 \qquad 011 \qquad 000$$

$$011 \qquad 000 \qquad 011 \qquad 000 \qquad 011 \qquad 000$$

$$011 \qquad 000 \qquad 011 \qquad 000 \qquad 011 \qquad 000$$

$$011 \qquad 000 \qquad 011 \qquad 000 \qquad 011 \qquad 000$$

For every k, we reduce SAT on n vertices k-DS with

vertices

For every k, we reduce SAT on n vertices k-DS with

$$\approx 2^{n/k}$$

vertices

• If k-DS on N vertices can be solved in time $N^{k-0.1}$ then SAT can be solved in time

$$N^{k-0.1} = 2^{(n/k)(k-0.1)} = 2^{n-0.1n/k} \leq 2^n$$

$$= 7 \text{ results } !! \text{ you found}$$

$$= new algorithmic idea!$$