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- Today: More examples
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FOUR COLOR THEOREM

Theorem (Appel, Haken, 1976) ¥
Every map can be colored with 4 colors.
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FOUR COLOR THEOREM

Theorem (Appel, Haken, 1976)
Every map can be colored with 4 colors.

- Proved using a computer.

- Computer checked almost 2000 graphs.

- Robertson, Sanders, Seymour, and Thomas
gave a much simpler proof in 1997 (still
using a computer search).

Theorem (Weak Version)
Every map can be colored with 6 colors.
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SIX COLOR THEOREM

Theorem (Weak Version)
Every map can be colored with 6 colors.

- Induction on the number of countries n.
. Base case. n < 6: can color with 6 colors.

- Induction assumption. All maps with R
countries can be colored with 6 colors.

- Induction step. We'll show that any map
with R 4+ 1 countries can be colored with 6

colors.
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Every map contains a country v with at most 5
neighbors.
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Graph Coloring



GRAPH COLORING

- A graph coloring Is a coloring of the graph
vertices s.t. no pair of adjacent vertices share
the same color.



GRAPH COLORING

- A graph coloring Is a coloring of the graph
vertices s.t. no pair of adjacent vertices share
the same color.

+ The chromatic number y(G) of a graph G Is the
smallest number of colors needed to color the

graph.
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CHROMATIC NUMBER

M(6)=35

Chromatic
number iIs 3




COMPLETE GRAPHS

The chromatic number of K, is_r_7;
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PATH GRAPHS

For n > 1, the chromatic number
of P, IS 2.




CYCLE GRAPHS

For even n, the chromatic number
of C, IS 2.




CYCLE GRAPHS

For odd n > 2, the chromatic num-
ber of C, IS 3.
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Applications



EXAM SCHEDULE

- Each student takes an exam in each of her courses
- All students in one course take the exam together
- One student cannot take two exams per day

- What Is the minimum number of days needed for

the exams?
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EXAM SCHEDULE

- Each student takes an exam in each of her courses
- All students in one course take the exam together
- One student cannot take two exams per day

- What Is the minimum number of days needed for
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BANDWIDTH ALLOCATION

Different stations are allowed to use the same
frequency If they are far apart. What Is an
optimal assignment of frequencies to stations?
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BANDWIDTH ALLOCATION

Different stations are allowed to use the same
frequency If they are far apart. What Is an
optimal assignment of frequencies to stations?
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OTHER APPLICATIONS

- Scheduling Problems
- Register Allocation
- Sudoku puzzles

- Taxis scheduling



Exact Algorithm for Coloring



DYNAMIC PROGRAMMING

- Given graph G on n vertices, find
x(G)—minimum number of colors in a valid
coloring of G
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DYNAMIC PROGRAMMING

- Given graph G on n vertices, find

x(G)—minimum number of colors in a valid
coloring of G

- Dynamic programming 1s one of the most
powerful algorithmic technigues

- Rough idea: express a solution for
a problem through solutions for smaller
subproblems



SUBPROBLEMS

+ For a subset of vertices S C {1,...,n}
computelxgyi}the minimum number of
colors needed to color vertices S




SUBPROBLEMS
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SUBPROBLEMS

- For a subset of vertices S C {1,...,n}
compute x(S)—the minimum number of
colors needed to color vertices S

- Consider S. For any subset@g S If there
are no edges between vertices from U, we
can color them all in one color, and use
x(S\ U) to color the rest

min 1% R(S\U)
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SUBPROBLEMS

+ For a subset of vertices S C {1,...,n}
compute x(S)—the minimum number of
colors needed to color vertices S

- Consider S. For any subset U C S, If there
are no edges between vertices from U, we
can color them all in one color, and use
x(S\ U) to color the rest

X(S) = min T4+ x(S\ U)

U without edges



ORDER OF SUBPROBLEMS

+ Need to process all subsets S C {1,...,n}
In order that guarantees that when
computing the value of_@ the values of

(X(S \ Uhhave already been computed




ORDER OF SUBPROBLEMS

+ Need to process all subsets S C {1,...,n}
In order that guarantees that when
computing the value ofﬁ), the values of
x(S\ U) have already been computed

- For example, we can process subsets In
order of Iincreasing size




ALGORITHM

x(0) =0



ALGORITHM

=0  s=151
for sm n:
for a_LS_ C{1,...,n} of size s:

R(S)=?



ALGORITHM

x(0) =0
for s from 1to n:

forallSC{1,...,n} of size s:

for all_y C S, U without edges

X(S) = min{x(5), x(S\ U) + 1}

(51, w3)




ALGORITHM

x(0) =0
for s from 1to n:
forallSC{1,...,n} of size s:
forall U C S, U without edges
X(S) = min{x(5),x(5\ U) + 1}

return x({1,...,n})

e —




RUNNING TIME

x(0) =0
FOR S FROM 1TO n
”' y (5'
FORALLS C {1,..., n} OF SIZE 52

FORALLU C S, U WITHOUT EDGES

———

X(5) = min{x($), (S\U)+1}

RETURN x ({1, . . ., n})
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Randomized Algorithm for
3-Coloring



RANDOMIZED ALGORITHM

N P-haro

- Glven a 3-colorable graph, find a 3-coloring
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RANDOMIZED ALGORITHM

- Glven a 3-colorable graph, find a 3-coloring

- This problem is NP-hard, we'll give an
exponential-time algorithm



RANDOMIZED ALGORITHM

- Forbid one random color at each vertex



RANDOMIZED ALGORITHM
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RANDOMIZED ALGORITHM

N ——

-(Forbid one random color at each vertex }
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- Solve 2-SAT In time
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RANDOMIZED ALGORITHM
1‘;“ ‘Li‘m—ls h_e,zaq“

- Forbid one random color at each vertex
- Solve 2-SAT In polynomial time

- Repeat the algorithm (3/2)" times
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Approximate Algorithm for
3-Coloring



APPROXIMATE COLORING

- Given a 3-colorable graph, finding a 3-coloring
IS NP-hard 2iep. Hinne
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APPROXIMATE COLORING

- Given a 3-colorable graph, finding a 3-coloring
IS NP-hard

- Glven a 3-colorable graph, finding an
n-coloring is trivial

3fn colons
- We'll see how to find an O(+/n)-coloring in
polynomial time



GRAPHS OF BOUNDED DEGREE

Greedy Coloring

A graph G where each vertex has degree<£\ can
be colored with A + 1 colors.
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GRAPHS OF BOUNDED DEGREE

Greedy Coloring

A graph G where each vertex has degree A can
be colored with A + 1 colors.




APPROXIMATE ALGORITHM fore 3-edonrsy

While there is vertex v € G of degree > /n:



APPROXIMATE ALGORITHM

While there is vertex v € G of degree > /n:
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APPROXIMATE ALGORITHM

While there is vertex v € G of degree > \/_
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APPROXIMATE ALGORITHM

While there is vertex v € G of degree > +/n:
Color the neighbors of v in 2 new colors,
remove them from the graph



APPROXIMATE ALGORITHM

While there is vertex v € G of degree > /n: | 2Vn
Color the neighbors of vin 2 new colors, | ¢elors

remove them from the graph

Jn | All remaining vertices have degree < /n. Color
cdoed the rest of the graph using +/n new colors
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