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Definition
A circuit is a directed acyclic graph of in-degree
at most 2. Nodes of in-degree 0 are called
inputs and are marked by Boolean variables
and constants. Nodes of in-degree 1 and 2 are
called gates: gates of in-degree 1 are labeled
with NOT, gates of in-degree 2 are labeled with
AND or OR. One of the sinks is marked as
output.
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f : {0, 1}n → {0, 1}
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EXPLICIT BOUNDS

P ̸= NP

Most functions have exponen-
tial circuit complexity

We want to prove super-
polynomial lower bounds
(for a function from NP)

We can prove only ≈5n lower
bounds
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HIERARCHY THEOREM
Theorem
For any T ≤ 2n/n, there is a function
f : {0, 1}n → {0, 1} s.t.

Size(f) = T± n .

g0(x) = 0 , ∀x ∈ {0, 1}n

Size(g0) = 1

Size(h) ≥ 2n/n

h : {0, 1}n → {0, 1}

y1, . . . , yk ∈ {0, 1}n

h(yi) = 1
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HYBRID METHOD

g0(x) = 1 never

g1(x) = 1 if x = y1

g2(x) = 1 if x ∈ {y1, y2}

g3(x) = 1 if x ∈ {y1, y2, y3}

. . .

gk(x) = 1 if x ∈ {y1, . . . , yk}h =

gi+1(x) = gi(x) ∨ (x = yi+1)

gi+1(x) = gi(x) ∨ (x = 1011)

gi+1(x) = gi(x) ∨ (x1 ∧ x̄2 ∧ x3 ∧ x4)

Size(gi+1) ≤ Size(gi) + 2n
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g0 g1 g2 . . . gk
1

Size(gi)

2n/n

≤ 2n

T ≤ 2n



HIERARCHY THEOREM

Theorem
For any T ≤ 2n/n, there is a function
f : {0, 1}n → {0, 1} s.t.

Size(f) = T± n .
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Find a hard function



CIRCUIT COMPLEXITY

• Goal: Find a hard function

• Lower bounds: what functions are hard

• Upper bounds: what functions are easy



CIRCUIT COMPLEXITY

• Goal: Find a hard function

• Lower bounds: what functions are hard

• Upper bounds: what functions are easy



CIRCUIT COMPLEXITY

• Goal: Find a hard function

• Lower bounds: what functions are hard

• Upper bounds: what functions are easy



CIRCUIT UPPER BOUND. PROOF
Upper Bound [Lup1958]
Any function can be computed by a circuit of
size

≤ 10 · 2n − 4



CIRCUIT UPPER BOUND. PROOF
Upper Bound [Lup1958]
Any function can be computed by a circuit of
size

≤ 10 · 2n − 4

f(x1, . . . , xn) =
{
f(1, x2, . . . , xn), if x1 = 1
f(0, x2, . . . , xn), if x1 = 0



CIRCUIT UPPER BOUND. PROOF
Upper Bound [Lup1958]
Any function can be computed by a circuit of
size

≤ 10 · 2n − 4

f(x1, . . . , xn) =
{
f(1, x2, . . . , xn), if x1 = 1
f(0, x2, . . . , xn), if x1 = 0

= (x1 ∧ f(1, x2, . . . , xn)) ∨ (x̄1 ∧ f(0, x2, . . . , xn))



CIRCUIT UPPER BOUND. PROOF
Upper Bound [Lup1958]
Any function can be computed by a circuit of
size

≤ 10 · 2n − 4

f(x1, . . . , xn) =
{
f(1, x2, . . . , xn), if x1 = 1
f(0, x2, . . . , xn), if x1 = 0

= (x1 ∧ f(1, x2, . . . , xn)) ∨ (x̄1 ∧ f(0, x2, . . . , xn))

= (x1 ∧ g1(x2, . . . , xn)) ∨ (x̄1 ∧ g0(x2, . . . , xn))



CIRCUIT UPPER BOUND. PROOF
Upper Bound [Lup1958]
Any function can be computed by a circuit of
size

≤ 10 · 2n − 4

f(x1, . . . , xn) =
{
f(1, x2, . . . , xn), if x1 = 1
f(0, x2, . . . , xn), if x1 = 0

= (x1 ∧ f(1, x2, . . . , xn)) ∨ (x̄1 ∧ f(0, x2, . . . , xn))

= (x1 ∧ g1(x2, . . . , xn)) ∨ (x̄1 ∧ g0(x2, . . . , xn))

Size(n) ≤ 4+ 2 Size(n− 1) = O(2n)



CIRCUIT LOWER BOUND. PROOF

Lower Bound [Sha1949]
Almost all functions of n variables have circuit
size

≥ 2n/(10n)


