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Definition

A circuit is a directed acyclic graph of in-degree
at most 2. Nodes of in-degree 0 are called
inputs and are marked by Boolean variables
and constants. Nodes of in-degree 1and 2 are
called gates: gates of in-degree 1 are labeled
with NOT, gates of in-degree 2 are labeled with
AND or OR. One of the sinks is marked as
output.
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Lower Bound [Sha1949]
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Upper Bound [Lup1958]
Any function can be computed by a circuit of
size
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EXPLICIT BOUNDS

Most functions have exponen-
tial circuit complexity

We want to prove super-
P4 NP e o

polynomial lower bounds
(for a function from NP)

We can prove only ~5n lower
bounds
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HIERARCHY THEOREM
Theorem

For any T < 2"/n, there is a function
f:{0,1}" — {0,1} s.t.

Size(f)=T=£n.

go(x) =0,Vx € {0,1}" Size(h) > 2"/n
Size(go) =1 h:{0,1}" — {0,1}
Vi,.... Ve € {0,1}"
h(yi) =1
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HYBRID METHOD
go(X) =1 never
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HYBRID METHOD

go(X) =1 never

gip1(X) = gi(x) V (X = Y1)
gi(x) =1 1ifx=y,

gir1(x) = gi(x) v (x = 1011)
QZ(X) =1ifxe {)/1,)/2}

' 9i1(X) = gi(X) V (X1 AXa A X3 A Xy)
g3(x) =1 ifx € {y1,¥2,¥3}

Size(gjy1) < Size(g;) + 2n

h=gr(X)="11fx € {y1,..., ¥}
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HIERARCHY THEOREM

Theorem

For any T < 2"/n, there is a function
f:{0,1}" — {0,1} s.t.

Size(f)=T=£n.



# functions

GOAL

poly(n) 2"/n

Circuit Complexity

10n




# functions

GOAL

Find a hard function

10n

poly(n) 2"/n

Circuit Complexity




CIRCUIT COMPLEXITY

- Goal: Find a hard function



CIRCUIT COMPLEXITY

- Goal: Find a hard function

- Lower bounds: what functions are hard



CIRCUIT COMPLEXITY

- Goal: Find a hard function

- Lower bounds: what functions are hard

- Upper bounds: what functions are easy
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CIRCUIT UPPER BOUND. PROOF

Upper Bound [Lup1958]

Any function can be computed by a circuit of
size

<10-2" — 4

(1, X2, ..., %n), 1fTxy=1
. xe) = 0 )

f0,%2,...,X%), 1fx;=0

= (X1 Af(1, X2, X)) V(K A F(0, X2, ..., Xn)
= (X1 A g1(X2, ..., Xn)) V (X3 A Go(Xa, .-+, Xn))
Size(n) < 4 + 2Size(n — 1) = 0(2")



CIRCUIT LOWER BOUND. PROOF

Lower Bound [Sha1949]
Almost all functions of n variables have circuit
size

> 2"/(10n)



