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HEURISTIC ALGORITHMS
• When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

• We can use heuristic algorithms
• Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

• Some heuristic algorithms are fast but not
guaranteed to find optimal solutions

• Some heuristic algorithms find optimal
solutions but not guaranteed to be fast
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Traveling Salesman



TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once
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NEAREST NEIGHBORS

• Going to the nearest unvisited node at
every iteration?

• Efficient, works reasonably well in practice
• May produce a cycle that is much worse
than an optimal one
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For Euclidean instances, the result-
ing cycle is O(log n)-approximate



LOCAL SEARCH

• s← some initial solution

• while it is possible to change 2 edges in s
to get a better cycle s′:
• s← s′

• return s
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LOCAL SEARCH

Local Search with parameter d :

• s← some initial solution
• while it is possible to change d edges in s
to get a better cycle s′:
• s← s′

• return s



PROPERTIES

• Computes a local optimum instead of a
global optimum

• The larger d, the better the resulting
solution and the higher is the running time
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PERFORMANCE

• Trade-off between quality and running
time of a single iteration

• Still, the number of iterations may be
exponential and the quality of the found
cycle may be poor

• But works well in practice
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• if F has no clauses:
return “sat”

• if F contains an empty clause:
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return “sat”
• if SolveSAT(F[x← 1]) = “sat”:

return “sat”
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branches of the recursion tree, we track
carefully each branch

• When we realize that a branch is dead
(cannot be extended to a solution),
we immediately cut it
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a variable to branch on, simplify a formula
before branching, and use efficient data
structures

• Another commonly used technique is local
search
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Applications
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THE ART OF COMPUTER PROGRAMMING

Wow! — Section 7.2.2.2 has turned out to be the
longest section, by far, in The Art of Computer
Programming. The SAT problem is evidently a “killer
app,” because it is key to the solution of so many
problems. Consequently I can only hope that my
lengthy treatment does not also kill off my faithful
readers!

Donald Knuth



SAT HANDBOOK



CONFERENCE, COMPETITION, JOURNAL

• Annual SAT Conference (since 1996):
http://satisfiability.org

• Annual SAT Solving competitions (since
2002):
http://www.satcompetition.org/

• Journal on Satisfiability, Boolean Modeling
and Computation:
http://jsatjournal.org/
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SAT SOLVERS

from pycosat import solve

clauses = [ [-1, -2, -3], [1, -2], [2, -3], [3,
-1], [1, 2, 3] ]

print(solve(clauses))
print(solve(clauses[1:]))

UNSAT
[1, 2, 3]
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N QUEENS

Is it possible to place n queens on an n× n
board such that no two of them attack each
other?
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ENCODING AS SAT
• n2 0/1-variables: for 0 ≤ i, j < n, xij = 1 iff
queen is placed into cell (i, j)

• For 0 ≤ i < n, ith row contains ≥ 1 queen:
(xi0 = 1 or xi2 = 1 or . . . or xi(n−1) = 1) .

• For 0 ≤ i < n, ith row contains ≤ 1 queen:
∀0 ≤ j1 ̸= j2 < n : (xij1 = 0 or xij2 = 0) .

• For 0 ≤ j < n, jth column contains ≤ 1 queen:
∀0 ≤ i1 ̸= i2 < n : (xi1j = 0 or xi2j = 0) .

• For each pair (i1, j1), (i2, j2) on diagonal:
(xi1j1 = 0 or xi2j2 = 0) .
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