
GEMS OF TCS
HEURISTIC ALGORITHMS

Sasha Golovnev
Semptermber 20, 2023

HEURISTIC ALGORITHMS
• When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

• We can use heuristic algorithms
• Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

• Some heuristic algorithms are fast but not
guaranteed to find optimal solutions

• Some heuristic algorithms find optimal
solutions but not guaranteed to be fast

HEURISTIC ALGORITHMS
• When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

• We can use heuristic algorithms

• Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

• Some heuristic algorithms are fast but not
guaranteed to find optimal solutions

• Some heuristic algorithms find optimal
solutions but not guaranteed to be fast

HEURISTIC ALGORITHMS
• When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

• We can use heuristic algorithms
• Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

• Some heuristic algorithms are fast but not
guaranteed to find optimal solutions

• Some heuristic algorithms find optimal
solutions but not guaranteed to be fast

HEURISTIC ALGORITHMS
• When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

• We can use heuristic algorithms
• Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

• Some heuristic algorithms are fast but not
guaranteed to find optimal solutions

• Some heuristic algorithms find optimal
solutions but not guaranteed to be fast

HEURISTIC ALGORITHMS
• When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

• We can use heuristic algorithms
• Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

• Some heuristic algorithms are fast but not
guaranteed to find optimal solutions

• Some heuristic algorithms find optimal
solutions but not guaranteed to be fast

Traveling Salesman

TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

5

2

4

2

2

1

13

3
3

TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

5

2

4

2

2

1

13

3
3

length: 9

NEAREST NEIGHBORS

• Going to the nearest unvisited node at
every iteration?

• Efficient, works reasonably well in practice
• May produce a cycle that is much worse
than an optimal one

NEAREST NEIGHBORS

• Going to the nearest unvisited node at
every iteration?

• Efficient, works reasonably well in practice

• May produce a cycle that is much worse
than an optimal one

NEAREST NEIGHBORS

• Going to the nearest unvisited node at
every iteration?

• Efficient, works reasonably well in practice
• May produce a cycle that is much worse
than an optimal one

NEAREST NEIGHBORS: BAD CASE
• How to fool the nearest neighbors
heuristic?

• Assume that the weights of almost all the
edges in the graph are equal to 2

• And we start to construct a cycle:

NEAREST NEIGHBORS: BAD CASE
• How to fool the nearest neighbors
heuristic?

• Assume that the weights of almost all the
edges in the graph are equal to 2

• And we start to construct a cycle:

NEAREST NEIGHBORS: BAD CASE
• How to fool the nearest neighbors
heuristic?

• Assume that the weights of almost all the
edges in the graph are equal to 2

• And we start to construct a cycle:

NEAREST NEIGHBORS: BAD CASE
• How to fool the nearest neighbors
heuristic?

• Assume that the weights of almost all the
edges in the graph are equal to 2

• And we start to construct a cycle:

1

NEAREST NEIGHBORS: BAD CASE
• How to fool the nearest neighbors
heuristic?

• Assume that the weights of almost all the
edges in the graph are equal to 2

• And we start to construct a cycle:

1
1

NEAREST NEIGHBORS: BAD CASE
• How to fool the nearest neighbors
heuristic?

• Assume that the weights of almost all the
edges in the graph are equal to 2

• And we start to construct a cycle:

1
1

1

NEAREST NEIGHBORS: BAD CASE
• How to fool the nearest neighbors
heuristic?

• Assume that the weights of almost all the
edges in the graph are equal to 2

• And we start to construct a cycle:

1
1

1

1

NEAREST NEIGHBORS: BAD CASE
• How to fool the nearest neighbors
heuristic?

• Assume that the weights of almost all the
edges in the graph are equal to 2

• And we start to construct a cycle:

1
1

1

1
99

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

OPT ≈ 26.42

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

OPT ≈ 26.42

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

OPT ≈ 26.42

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

OPT ≈ 26.42

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

OPT ≈ 26.42

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

OPT ≈ 26.42
NN ≈ 28.33

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

OPT ≈ 26.42
NN ≈ 28.33

For Euclidean instances, the result-
ing cycle is O(log n)-approximate

LOCAL SEARCH

• s← some initial solution

• while it is possible to change 2 edges in s
to get a better cycle s′:
• s← s′

• return s

LOCAL SEARCH

• s← some initial solution
• while it is possible to change 2 edges in s
to get a better cycle s′:

• s← s′

• return s

LOCAL SEARCH

• s← some initial solution
• while it is possible to change 2 edges in s
to get a better cycle s′:
• s← s′

• return s

LOCAL SEARCH

• s← some initial solution
• while it is possible to change 2 edges in s
to get a better cycle s′:
• s← s′

• return s

EXAMPLE

Changing two edges in a suboptimal solution:

EXAMPLE

Changing two edges in a suboptimal solution:

EXAMPLE

Changing two edges in a suboptimal solution:

EXAMPLE

Changing two edges in a suboptimal solution:

EXAMPLE

A suboptimal solution that cannot be improved
by changing two edges:

Need to allow changing three edges to improve
this solution

EXAMPLE

A suboptimal solution that cannot be improved
by changing two edges:

Need to allow changing three edges to improve
this solution

LOCAL SEARCH

Local Search with parameter d :

• s← some initial solution
• while it is possible to change d edges in s
to get a better cycle s′:
• s← s′

• return s

PROPERTIES

• Computes a local optimum instead of a
global optimum

• The larger d, the better the resulting
solution and the higher is the running time

PROPERTIES

• Computes a local optimum instead of a
global optimum

• The larger d, the better the resulting
solution and the higher is the running time

PERFORMANCE

• Trade-off between quality and running
time of a single iteration

• Still, the number of iterations may be
exponential and the quality of the found
cycle may be poor

• But works well in practice

PERFORMANCE

• Trade-off between quality and running
time of a single iteration

• Still, the number of iterations may be
exponential and the quality of the found
cycle may be poor

• But works well in practice

PERFORMANCE

• Trade-off between quality and running
time of a single iteration

• Still, the number of iterations may be
exponential and the quality of the found
cycle may be poor

• But works well in practice

Satisfiability

SAT

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

(x1∨x2∨x3)∧(x1∨¬x2)∧(¬x1∨x3)∧(x2∨¬x3)∧(¬x1∨¬x2∨¬x3)

SAT

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

(x1∨x2∨x3)∧(x1∨¬x2)∧(¬x1∨x3)∧(x2∨¬x3)∧(¬x1∨¬x2∨¬x3)

BACKTRACKING

• Construct a solution piece by piece

• Backtrack if the current partial solution
cannot be extended to a valid solution

BACKTRACKING

• Construct a solution piece by piece
• Backtrack if the current partial solution
cannot be extended to a valid solution

EXAMPLE

(x1 ∨ x2 ∨ x3 ∨ x4)(¬x1)(x1 ∨ x2 ∨ ¬x3)(x1 ∨ ¬x2)(x2 ∨ ¬x4)

EXAMPLE

(x1 ∨ x2 ∨ x3 ∨ x4)(¬x1)(x1 ∨ x2 ∨ ¬x3)(x1 ∨ ¬x2)(x2 ∨ ¬x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ ¬x3)(¬x2)(x2 ∨ ¬x4)

x1 = 0

EXAMPLE

(x1 ∨ x2 ∨ x3 ∨ x4)(¬x1)(x1 ∨ x2 ∨ ¬x3)(x1 ∨ ¬x2)(x2 ∨ ¬x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ ¬x3)(¬x2)(x2 ∨ ¬x4)

x1 = 0

(x3 ∨ x4)(¬x3)(¬x4)

x2 = 0

EXAMPLE

(x1 ∨ x2 ∨ x3 ∨ x4)(¬x1)(x1 ∨ x2 ∨ ¬x3)(x1 ∨ ¬x2)(x2 ∨ ¬x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ ¬x3)(¬x2)(x2 ∨ ¬x4)

x1 = 0

(x3 ∨ x4)(¬x3)(¬x4)

x2 = 0

(x4)(¬x4)

x3 = 0

EXAMPLE

(x1 ∨ x2 ∨ x3 ∨ x4)(¬x1)(x1 ∨ x2 ∨ ¬x3)(x1 ∨ ¬x2)(x2 ∨ ¬x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ ¬x3)(¬x2)(x2 ∨ ¬x4)

x1 = 0

(x3 ∨ x4)(¬x3)(¬x4)

x2 = 0

(x4)(¬x4)

x3 = 0

()

x4 = 0

EXAMPLE

(x1 ∨ x2 ∨ x3 ∨ x4)(¬x1)(x1 ∨ x2 ∨ ¬x3)(x1 ∨ ¬x2)(x2 ∨ ¬x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ ¬x3)(¬x2)(x2 ∨ ¬x4)

x1 = 0

(x3 ∨ x4)(¬x3)(¬x4)

x2 = 0

(x4)(¬x4)

x3 = 0

()

x4 = 0

()

x4 = 1

EXAMPLE

(x1 ∨ x2 ∨ x3 ∨ x4)(¬x1)(x1 ∨ x2 ∨ ¬x3)(x1 ∨ ¬x2)(x2 ∨ ¬x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ ¬x3)(¬x2)(x2 ∨ ¬x4)

x1 = 0

(x3 ∨ x4)(¬x3)(¬x4)

x2 = 0

(x4)(¬x4)

x3 = 0

()

x4 = 0

()

x4 = 1

()(¬x4)

x3 = 1

EXAMPLE

(x1 ∨ x2 ∨ x3 ∨ x4)(¬x1)(x1 ∨ x2 ∨ ¬x3)(x1 ∨ ¬x2)(x2 ∨ ¬x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ ¬x3)(¬x2)(x2 ∨ ¬x4)

x1 = 0

(x3 ∨ x4)(¬x3)(¬x4)

x2 = 0

(x4)(¬x4)

x3 = 0

()

x4 = 0

()

x4 = 1

()(¬x4)

x3 = 1

()

x2 = 1

EXAMPLE

(x1 ∨ x2 ∨ x3 ∨ x4)(¬x1)(x1 ∨ x2 ∨ ¬x3)(x1 ∨ ¬x2)(x2 ∨ ¬x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ ¬x3)(¬x2)(x2 ∨ ¬x4)

x1 = 0

(x3 ∨ x4)(¬x3)(¬x4)

x2 = 0

(x4)(¬x4)

x3 = 0

()

x4 = 0

()

x4 = 1

()(¬x4)

x3 = 1

()

x2 = 1

()(x2 ∨ ¬x4)

x1 = 1

BACKTRACKING ALGORITHM
• SolveSAT(F):

• if F has no clauses:
return “sat”

• if F contains an empty clause:
return “unsat”

• x← unassigned variable of F
• if SolveSAT(F[x← 0]) = “sat”:

return “sat”
• if SolveSAT(F[x← 1]) = “sat”:

return “sat”
• return “unsat”

BACKTRACKING ALGORITHM
• SolveSAT(F):

• if F has no clauses:
return “sat”

• if F contains an empty clause:
return “unsat”

• x← unassigned variable of F

• if SolveSAT(F[x← 0]) = “sat”:
return “sat”

• if SolveSAT(F[x← 1]) = “sat”:
return “sat”

• return “unsat”

BACKTRACKING ALGORITHM
• SolveSAT(F):

• if F has no clauses:
return “sat”

• if F contains an empty clause:
return “unsat”

• x← unassigned variable of F
• if SolveSAT(F[x← 0]) = “sat”:

return “sat”

• if SolveSAT(F[x← 1]) = “sat”:
return “sat”

• return “unsat”

BACKTRACKING ALGORITHM
• SolveSAT(F):

• if F has no clauses:
return “sat”

• if F contains an empty clause:
return “unsat”

• x← unassigned variable of F
• if SolveSAT(F[x← 0]) = “sat”:

return “sat”
• if SolveSAT(F[x← 1]) = “sat”:

return “sat”

• return “unsat”

BACKTRACKING ALGORITHM
• SolveSAT(F):

• if F has no clauses:
return “sat”

• if F contains an empty clause:
return “unsat”

• x← unassigned variable of F
• if SolveSAT(F[x← 0]) = “sat”:

return “sat”
• if SolveSAT(F[x← 1]) = “sat”:

return “sat”
• return “unsat”

BACKTRACKING

• Thus, instead of considering all 2n
branches of the recursion tree, we track
carefully each branch

• When we realize that a branch is dead
(cannot be extended to a solution),
we immediately cut it

BACKTRACKING

• Thus, instead of considering all 2n
branches of the recursion tree, we track
carefully each branch

• When we realize that a branch is dead
(cannot be extended to a solution),
we immediately cut it

SAT SOLVERS

• Backtracking is used in many
state-of-the-art SAT-solvers

• SAT-solvers use tricky heuristics to choose
a variable to branch on, simplify a formula
before branching, and use efficient data
structures

• Another commonly used technique is local
search

SAT SOLVERS

• Backtracking is used in many
state-of-the-art SAT-solvers

• SAT-solvers use tricky heuristics to choose
a variable to branch on, simplify a formula
before branching, and use efficient data
structures

• Another commonly used technique is local
search

SAT SOLVERS

• Backtracking is used in many
state-of-the-art SAT-solvers

• SAT-solvers use tricky heuristics to choose
a variable to branch on, simplify a formula
before branching, and use efficient data
structures

• Another commonly used technique is local
search

Applications

THE ART OF COMPUTER PROGRAMMING

THE ART OF COMPUTER PROGRAMMING

Wow! — Section 7.2.2.2 has turned out to be the
longest section, by far, in The Art of Computer
Programming. The SAT problem is evidently a “killer
app,” because it is key to the solution of so many
problems. Consequently I can only hope that my
lengthy treatment does not also kill off my faithful
readers!

Donald Knuth

SAT HANDBOOK

CONFERENCE, COMPETITION, JOURNAL

• Annual SAT Conference (since 1996):
http://satisfiability.org

• Annual SAT Solving competitions (since
2002):
http://www.satcompetition.org/

• Journal on Satisfiability, Boolean Modeling
and Computation:
http://jsatjournal.org/

http://satisfiability.org
http://www.satcompetition.org/
http://jsatjournal.org/

CONFERENCE, COMPETITION, JOURNAL

• Annual SAT Conference (since 1996):
http://satisfiability.org

• Annual SAT Solving competitions (since
2002):
http://www.satcompetition.org/

• Journal on Satisfiability, Boolean Modeling
and Computation:
http://jsatjournal.org/

http://satisfiability.org
http://www.satcompetition.org/
http://jsatjournal.org/

CONFERENCE, COMPETITION, JOURNAL

• Annual SAT Conference (since 1996):
http://satisfiability.org

• Annual SAT Solving competitions (since
2002):
http://www.satcompetition.org/

• Journal on Satisfiability, Boolean Modeling
and Computation:
http://jsatjournal.org/

http://satisfiability.org
http://www.satcompetition.org/
http://jsatjournal.org/

MATH PROOFS

MATH PROOFS

SAT SOLVERS

from pycosat import solve

clauses = [[-1, -2, -3], [1, -2], [2, -3], [3,
-1], [1, 2, 3]]

print(solve(clauses))
print(solve(clauses[1:]))

UNSAT
[1, 2, 3]

SAT SOLVERS

from pycosat import solve

clauses = [[-1, -2, -3], [1, -2], [2, -3], [3,
-1], [1, 2, 3]]

print(solve(clauses))
print(solve(clauses[1:]))

UNSAT
[1, 2, 3]

N QUEENS

Is it possible to place n queens on an n× n
board such that no two of them attack each
other?

EXAMPLES

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

EXAMPLES

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

ENCODING AS SAT
• n2 0/1-variables: for 0 ≤ i, j < n, xij = 1 iff
queen is placed into cell (i, j)

• For 0 ≤ i < n, ith row contains ≥ 1 queen:
(xi0 = 1 or xi2 = 1 or . . . or xi(n−1) = 1) .

• For 0 ≤ i < n, ith row contains ≤ 1 queen:
∀0 ≤ j1 ̸= j2 < n : (xij1 = 0 or xij2 = 0) .

• For 0 ≤ j < n, jth column contains ≤ 1 queen:
∀0 ≤ i1 ̸= i2 < n : (xi1j = 0 or xi2j = 0) .

• For each pair (i1, j1), (i2, j2) on diagonal:
(xi1j1 = 0 or xi2j2 = 0) .

ENCODING AS SAT
• n2 0/1-variables: for 0 ≤ i, j < n, xij = 1 iff
queen is placed into cell (i, j)

• For 0 ≤ i < n, ith row contains ≥ 1 queen:
(xi0 = 1 or xi2 = 1 or . . . or xi(n−1) = 1) .

• For 0 ≤ i < n, ith row contains ≤ 1 queen:
∀0 ≤ j1 ̸= j2 < n : (xij1 = 0 or xij2 = 0) .

• For 0 ≤ j < n, jth column contains ≤ 1 queen:
∀0 ≤ i1 ̸= i2 < n : (xi1j = 0 or xi2j = 0) .

• For each pair (i1, j1), (i2, j2) on diagonal:
(xi1j1 = 0 or xi2j2 = 0) .

ENCODING AS SAT
• n2 0/1-variables: for 0 ≤ i, j < n, xij = 1 iff
queen is placed into cell (i, j)

• For 0 ≤ i < n, ith row contains ≥ 1 queen:
(xi0 = 1 or xi2 = 1 or . . . or xi(n−1) = 1) .

• For 0 ≤ i < n, ith row contains ≤ 1 queen:
∀0 ≤ j1 ̸= j2 < n : (xij1 = 0 or xij2 = 0) .

• For 0 ≤ j < n, jth column contains ≤ 1 queen:
∀0 ≤ i1 ̸= i2 < n : (xi1j = 0 or xi2j = 0) .

• For each pair (i1, j1), (i2, j2) on diagonal:
(xi1j1 = 0 or xi2j2 = 0) .

ENCODING AS SAT
• n2 0/1-variables: for 0 ≤ i, j < n, xij = 1 iff
queen is placed into cell (i, j)

• For 0 ≤ i < n, ith row contains ≥ 1 queen:
(xi0 = 1 or xi2 = 1 or . . . or xi(n−1) = 1) .

• For 0 ≤ i < n, ith row contains ≤ 1 queen:
∀0 ≤ j1 ̸= j2 < n : (xij1 = 0 or xij2 = 0) .

• For 0 ≤ j < n, jth column contains ≤ 1 queen:
∀0 ≤ i1 ̸= i2 < n : (xi1j = 0 or xi2j = 0) .

• For each pair (i1, j1), (i2, j2) on diagonal:
(xi1j1 = 0 or xi2j2 = 0) .

ENCODING AS SAT
• n2 0/1-variables: for 0 ≤ i, j < n, xij = 1 iff
queen is placed into cell (i, j)

• For 0 ≤ i < n, ith row contains ≥ 1 queen:
(xi0 = 1 or xi2 = 1 or . . . or xi(n−1) = 1) .

• For 0 ≤ i < n, ith row contains ≤ 1 queen:
∀0 ≤ j1 ̸= j2 < n : (xij1 = 0 or xij2 = 0) .

• For 0 ≤ j < n, jth column contains ≤ 1 queen:
∀0 ≤ i1 ̸= i2 < n : (xi1j = 0 or xi2j = 0) .

• For each pair (i1, j1), (i2, j2) on diagonal:
(xi1j1 = 0 or xi2j2 = 0) .

IMPLEMENTATION

