GEMS OF TCS

HEURISTIC ALGORITHMS

Sasha Golovnev
Semptermber 20, 2023

HEURISTIC ALGORITHMS

- When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

HEURISTIC ALGORITHMS

- When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

- We can use heuristic algorithms

HEURISTIC ALGORITHMS

- When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

- We can use heuristic algorithms

- Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

HEURISTIC ALGORITHMS

- When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

- We can use heuristic algorithms

- Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

- Some heuristic algorithms are fast but not
guaranteed to find optimal solutions

HEURISTIC ALGORITHMS

- When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

- We can use heuristic algorithms

- Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

- Some heuristic algorithms are fast but not
guaranteed to find optimal solutions

- Some heuristic algorithms find optimal
solutions but not guaranteed to be fast

Traveling Salesman

TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

’7\5
-

TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

NEAREST NEIGHBORS

- Going to the nearest unvisited node at
every iteration?

NEAREST NEIGHBORS

- Going to the nearest unvisited node at
every iteration?

- Efficient, works reasonably well in practice

NEAREST NEIGHBORS

- Going to the nearest unvisited node at
every iteration?

- Efficient, works reasonably well in practice

- May produce a cycle that is much worse
than an optimal one

NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors
heuristic?

NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors
heuristic?

- Assume that the weights of almost all the
edges in the graph are equal to 2

NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors
heuristic?

- Assume that the weights of almost all the
edges in the graph are equal to 2

- And we start to construct a cycle:

(]

NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors
heuristic?

- Assume that the weights of almost all the
edges in the graph are equal to 2

- And we start to construct a cycle:

N

NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors
heuristic?

- Assume that the weights of almost all the
edges in the graph are equal to 2

- And we start to construct a cycle:

/1/\1
N\

NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors
heuristic?

- Assume that the weights of almost all the
edges in the graph are equal to 2

- And we start to construct a cycle:

N
1

NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors
heuristic?

- Assume that the weights of almost all the
edges in the graph are equal to 2

- And we start to construct a cycle:

1/1/\\
L

1\°

NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors
heuristic?

- Assume that the weights of almost all the
edges in the graph are equal to 2

- And we start to construct a cycle:

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

OPT ~ 26.42

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

OPT ~ 26.42

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

4

\ /

\Y

OPT ~ 26.42

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

Vi
A}

4

\ /

\Y

OPT ~ 26.42

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP
ol

\\\ 1

OPT ~ 26.42

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP
o=

I /
T T~ \
T~
\\\Z/
OPT ~ 26.42

NN ~~ 28.33

SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP

V)

\\\ ’

OPT ~ 26.42
NN ~~ 28.33

For Euclidean instances, the result-
ing cycle is O(log n)-approximate

LOCAL SEARCH

- S+ some Iinitial solution

LOCAL SEARCH

- S < some initial solution

- while it is possible to change 2 edges in s
to get a better cycle s

LOCAL SEARCH

- S < some initial solution

- while it is possible to change 2 edges in s
to get a better cycle s

c s« ¢

LOCAL SEARCH

- S < some initial solution

- while it is possible to change 2 edges in s
to get a better cycle s

c s« ¢

- return s

EXAMPLE

Changing two edges in a suboptimal solution:

o o

EXAMPLE

Changing two edges in a suboptimal solution:

o o

EXAMPLE

Changing two edges in a suboptimal solution:

o @] (e o

EXAMPLE

Changing two edges in a suboptimal solution:

(o O O O

EXAMPLE

A suboptimal solution that cannot be improved
by changing two edges:

EXAMPLE

A suboptimal solution that cannot be improved
by changing two edges:

o

.
=4

Need to allow changing three edges to improve
this solution

LOCAL SEARCH

Local Search with parameter d:

- S+ some initial solution

- while it is possible to change d edges in s
to get a better cycle s

S« ¢
- return s

PROPERTIES

- Computes a local optimum instead of a
global optimum

PROPERTIES

- Computes a local optimum instead of a
global optimum

- The larger d, the better the resulting
solution and the higher is the running time

PERFORMANCE

- Trade-off between quality and running
time of a single iteration

PERFORMANCE

- Trade-off between quality and running
time of a single iteration

- Still, the number of iterations may be
exponential and the quality of the found
cycle may be poor

PERFORMANCE

- Trade-off between quality and running
time of a single iteration

- Still, the number of iterations may be
exponential and the quality of the found
cycle may be poor

- But works well in practice

Satisfiability

SAT

(X1 VX2 VX3) A (X1 V=X) A (X V X3) A (X2 V —X3)

SAT

(X1 VX2 VX3) A (X1 V=X) A (X V X3) A (X2 V —X3)

(X1 VX \/X3)/\(X1 \/_\Xz)/\(_‘X'| \/X3)/\(X2\/_|X3)/\(_|X1 \/_|X2\/_|X3)

BACKTRACKING

- Construct a solution piece by piece

BACKTRACKING

- Construct a solution piece by piece

- Backtrack if the current partial solution
cannot be extended to a valid solution

EXAMPLE

(Xq V Xy VX3 VXz,)(—\X‘\)(X‘\ V Xy V ﬂX3)(X1 \ —\Xz)(Xz V —\Xz,)

EXAMPLE

(Xq V Xy VX3 VXz,)(—\X‘\)(X‘\ V Xy V ﬂX3)(X1 \ ﬂXz)(Xz V —\Xz,)

X1 _%

(Xz V X3 \/X4)(X2 \ ﬁX3)(ﬁX2)(X2 \ ﬁXA)

EXAMPLE

(Xq V Xy VX3 VXz,)(—\X‘\)(X‘\ V Xy V ﬂX3)(X1 \ ﬂXz)(Xz V —\Xz,)

X1 _V

(Xz V X3 \/X4)(X2 \ ﬁX3)(ﬁX2)(X2 \ ﬁXA)

Xz—O/

(X3 VX6) (—x3) (Xs)

EXAMPLE

(Xq V Xy VX3 VXz,)(—\X‘\)(X‘\ V Xy V ﬂX3)(X1 \ ﬂXz)(Xz V —\Xz,)

X1 _V

(Xz V X3 \/X4)(X2 \Y ﬁX3)(ﬁX2)(X2 \ ﬁXA)

Xz—O/

(X3 VX6) (—x3) (Xs)

X3 =20 f

(*4)(=x4)

EXAMPLE

(Xq V Xy VX3 VXz,)(—\X‘\)(X‘\ V Xy V ﬂX3)(X1 \ ﬂXz)(Xz V —\Xz,)

X1 _V

(Xz V X3 \/X4)(X2 \Y ﬁX3)(ﬁX2)(X2 \ ﬁXA)

Xz—O/

(X3 VX6) (—x3) (Xs)

X3 =20 f

(*4)(=x4)

X, =0

0

EXAMPLE

(Xq V Xy VX3 VXz,)(—\X‘\)(X‘\ V Xy V ﬂX3)(X1 \ ﬂXz)(Xz V —\Xz,)

X1 _V

(Xz V X3 \/X4)(X2 \Y ﬁX3)(ﬁX2)(X2 \ ﬁXA)

Xz—O/

(X3 VX6) (—x3) (Xs)

X3 =20 f

(*4)(=x4)

X, =0 X, =1

o] [0]

EXAMPLE

(Xq V Xy VX3 VXz,)(—\X‘\)(X‘\ V Xy V ﬂX3)(X1 \ ﬂXz)(Xz V —\Xz,)

X1 _V

Xz V X3V Xy (X2 \Y ﬁX3)(ﬁX2)(X2 \ ﬁXA)

=0

(X3 VX6) (—x3) (Xs)

X3 =0 f X3 =1

(*4)(=x4)

O()

X, =0 X, =1

o] [0]

EXAMPLE

(Xq V Xy VX3 VXz,)(—\X‘\)(X‘\ V Xy V ﬂX3)(X1 \ ﬂXz)(Xz V —\Xz,)

X1 _V

Xz V X3V Xy (X2 \Y ﬁX3)(ﬁX2)(X2 \ ﬁXA)

=0 X, =1

05V %) (=%3) (—x)

X3 =0 f X3 =1

(*4)(=x4)

O()

X, =0 X, =1

o] [0]

EXAMPLE

(Xq V Xy VX3 VXz,)(—\X‘\)(X‘\ V Xy V ﬂX3)(X1 \ ﬂXz)(Xz V —\Xz,)

XW—V \l

Xz V X3V Xy (X2 \Y ﬁX3)(ﬁX2)(X2 \ ﬁXA)

(X3 VX6) (—x3) (Xs)

X3 =0 f X3 =1

(*4)(=x4)

O()

X, =0 X, =1

o] [0]

X2:1

Toeev-x)

BACKTRACKING ALGORITHM

- SolveSAT(F):

- If F has no clauses:
return “sat”

- If F contains an empty clause:
return “unsat”

BACKTRACKING ALGORITHM

- SolveSAT(F):

- If F has no clauses:
return “sat”

- If F contains an empty clause:
return “unsat”

- X < unassigned variable of F

BACKTRACKING ALGORITHM

- SolveSAT(F):

- If F has no clauses:
return “sat”

- If F contains an empty clause:
return “unsat”

- X < unassigned variable of F

- If SolveSAT(F[x < 0]) = “sat™
return “sat”

BACKTRACKING ALGORITHM

- SolveSAT(F):

- If F has no clauses:
return “sat”

- If F contains an empty clause:
return “unsat”

- X < unassigned variable of F

- If SolveSAT(F[x < 0]) = “sat™
return “sat”

- If SolveSAT(F[x < 1]) = “sat™
return “sat”

BACKTRACKING ALGORITHM

- SolveSAT(F):

- If F has no clauses:
return “sat”

- If F contains an empty clause:
return “unsat”

- X < unassigned variable of F

- If SolveSAT(F[x < 0]) = “sat™
return “sat”

- If SolveSAT(F[x < 1]) = “sat™
return “sat”

- return “unsat”

BACKTRACKING

- Thus, instead of considering all 2"
branches of the recursion tree, we track
carefully each branch

BACKTRACKING

- Thus, instead of considering all 2"
branches of the recursion tree, we track
carefully each branch

- When we realize that a branch is dead
(cannot be extended to a solution),
we immediately cut it

SAT SOLVERS

- Backtracking is used in many
state-of-the-art SAT-solvers

SAT SOLVERS

- Backtracking is used in many
state-of-the-art SAT-solvers

- SAT-solvers use tricky heuristics to choose
a variable to branch on, simplify a formula
before branching, and use efficient data
structures

SAT SOLVERS

- Backtracking is used in many
state-of-the-art SAT-solvers

- SAT-solvers use tricky heuristics to choose
a variable to branch on, simplify a formula
before branching, and use efficient data
structures

- Another commonly used technique is local
search

Applications

THE ART OF COMPUTER PROGRAMMING

THE ART OF
COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 6A

A DRAFT OF
SECTION 7.2.2.2:
SATISFIABILITY

DONALD E. KNUTH Stanford University

THE ART OF COMPUTER PROGRAMMING

Wow! — Section 7.2.2.2 has turned out to be the
longest section, by far, in The Art of Computer
Programming. The SAT problem is evidently a “killer
app,” because it is key to the solution of so many
problems. Consequently | can only hope that my

lengthy treatment does not also kill off my faithful
readers!

Donald Knuth

SAT HANDBOOK

HANDBOOK

e e of satisfiability
[J
[J
[X) []
®
oo
°
[

[
000 s 00
©® @ Armin Biere []
@ @ Marijn Heule

Hans van Maaren o0
@ @ TobyWalsh

10S
Press

CONFERENCE, COMPETITION, JOURNAL

- Annual SAT Conference (since 1996):
http://satisfiability.org

http://satisfiability.org
http://www.satcompetition.org/
http://jsatjournal.org/

CONFERENCE, COMPETITION, JOURNAL

- Annual SAT Conference (since 1996):
http://satisfiability.org

- Annual SAT Solving competitions (since
2002):
http://www.satcompetition.org/

http://satisfiability.org
http://www.satcompetition.org/
http://jsatjournal.org/

CONFERENCE, COMPETITION, JOURNAL

- Annual SAT Conference (since 1996):
http://satisfiability.org

- Annual SAT Solving competitions (since
2002):
http://www.satcompetition.org/

- Journal on Satisfiability, Boolean Modeling
and Computation:
http://jsatjournal.org/

http://satisfiability.org
http://www.satcompetition.org/
http://jsatjournal.org/

MATH PROOFS

Home | News & Comment | Research | Careers & Jobs | Current issue | Archive | Audio & Video | For

Archive > Volume 534 > Issue 7605 > News > Aticle

Two-hundred-terabyte maths proof is largest ever

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?
Evelyn Lamb

26 May 2016

5] poF | W, Rights & Permissions

MATH PROOFS

PP, . . . Computer All
Q Quantamacazine Physics = Mathematics Biology Science Arficles

GEOMETRY

Computer Search Settles 90-
Year-Old Math Problem

L By translating Keller’s conjecture into a computer-
friendly search for a type of graph, researchers have
finally resolved a problem about covering spaces with

tiles.

SAT SOLVERS

from pycosat import solve

clauses = [[-1, -2, -31, [1, -21, [2, -31, [3,
‘1]y [17 21 3]]

print(solve(clauses))
print(solve(clauses[1:]))

SAT SOLVERS

from pycosat import solve

clauses = [[-1, -2, -31, [1, -21, [2, -31, [3,
‘1]y [17 21 3]]

print(solve(clauses))
print(solve(clauses[1:]))

UNSAT
[1, 2, 3]

N QUEENS

Is it possible to place n queensonann x n
board such that no two of them attack each
other?

w
0

L
W

w0

EXAMPLES

.....

012345678910MNM

OCaNWPHUIO N

EXAMPLES

01234567

ENCODING AS SAT

» n% 0/1-variables: for 0 <i,j < n, xj = 1iff
queen is placed into cell (/,))

ENCODING AS SAT

» n% 0/1-variables: for 0 <i,j < n, xj = 1iff
queen is placed into cell (i,))

- For 0 < i < n,ith row contains > 1 queen:
(Xip =T0rxp="10r ... or Xjn_y) = 1).

ENCODING AS SAT

» n% 0/1-variables: for 0 <i,j < n, xj = 1iff
queen is placed into cell (/,))
- For 0 < i < n,ith row contains > 1 queen:

(Xip =T0rxp="10r ... or Xjn_y) = 1).
- For 0 <i < n,ith row contains <1 queen:
V0 §j17éj2<n: (X,‘j1:OOI'X,'j2:O).

ENCODING AS SAT

» n% 0/1-variables: for 0 <i,j < n, xj = 1iff
queen is placed into cell (/,))

- For 0 < i < n,ith row contains > 1 queen:
(Xip =T0rxp="10r ... or Xjn_y) = 1).

- For 0 <i < n,ith row contains <1 queen:

VO <ji#jp<n: (xj, =0o0rx;=0).

- For 0 <j < n, jth column contains < 1 queen:
VO <iy#ip<n: (xjj=00rx,=0).

ENCODING AS SAT

» n% 0/1-variables: for 0 <i,j < n, xj = 1iff
queen is placed into cell (/,))

- For 0 < i < n,ith row contains > 1 queen:
(Xip =T0rxp="10r ... or Xjn_y) = 1).

- For 0 <i < n,ith row contains <1 queen:

VO <ji#jp<n: (xj, =0o0rx;=0).

- For 0 <j < n, jth column contains < 1 queen:
VO <iy#ip<n: (xjj=00rx,=0).

- For each pair (i, 1), (I2,J2) on diagonal:

(Xij, =0o0rx,, =0).

IMPLEMENTATION

from itertools import combinations, product
from pycosat import solve

n =10
clauses = []

converts a pair of integers into a unique integer
def varnum(i, j):

assert i in range(n) and j in range(n)

return i * n + j + 1

each row contains at least one queen
for i in range(n):
clauses.append([varnum(i, j) for j in range(n)])

each row contains at most one queen
for i in range(n):
for j1, j2 in combinations(range(n), 2):
clauses.append([-varnum(i, j1), -varnum(i, j2)]1)

each column contains at most one queen
for j in range(n):
for il, i2 in combinations(range(n), 2):
clauses.append([-varnum(il, j), -varnum(i2, j)])

no two queens stay on the same diagonal
for i1, j1, i2, j2 in product(range(n), repeat=4)
if i1 i2:
continue

if abs(il - i2) == abs(jl - j2)
clauses.append([-varnum(il, j1),
-varnum(i2, j2)]1)

assignment = solve(clauses)
for i, j in product(range(n), repeat=2):
if assignment[varnum(i, j) - 1] > @:
print(j, end=' ')

