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- When exact algorithms are too slow, and
approximate algorithm are not accurate
enough

- We can use heuristic algorithms

- Heuristic algorithms use practical methods
that are not guaranteed/proved to be optimal
or efficient

- Some heuristic algorithms are fast but not
guaranteed to find optimal solutions

- Some heuristic algorithms find optimal
solutions but not guaranteed to be fast
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NEAREST NEIGHBORS

- Going to the nearest unvisited node at
every iteration?

- Efficient, works reasonably well in practice

- May produce a cycle that is much worse
than an optimal one
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NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors
heuristic?

- Assume that the weights of almost all the
edges in the graph are equal to 2

- And we start to construct a cycle:
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For Euclidean instances, the result-
ing cycle is O(log n)-approximate
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- S < some initial solution

- while it is possible to change 2 edges in s
to get a better cycle s

c s« ¢

- return s
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A suboptimal solution that cannot be improved
by changing two edges:

o

.
=4

Need to allow changing three edges to improve
this solution



LOCAL SEARCH

Local Search with parameter d:

- S+ some initial solution

- while it is possible to change d edges in s
to get a better cycle s

S« ¢
- return s
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PROPERTIES

- Computes a local optimum instead of a
global optimum

- The larger d, the better the resulting
solution and the higher is the running time
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PERFORMANCE

- Trade-off between quality and running
time of a single iteration

- Still, the number of iterations may be
exponential and the quality of the found
cycle may be poor

- But works well in practice
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- Construct a solution piece by piece

- Backtrack if the current partial solution
cannot be extended to a valid solution
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BACKTRACKING ALGORITHM

- SolveSAT(F):

- If F has no clauses:
return “sat”

- If F contains an empty clause:
return “unsat”

- X < unassigned variable of F

- If SolveSAT(F[x < 0]) = “sat™
return “sat”

- If SolveSAT(F[x < 1]) = “sat™
return “sat”

- return “unsat”
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BACKTRACKING

- Thus, instead of considering all 2"
branches of the recursion tree, we track
carefully each branch

- When we realize that a branch is dead
(cannot be extended to a solution),
we immediately cut it
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SAT SOLVERS

- Backtracking is used in many
state-of-the-art SAT-solvers

- SAT-solvers use tricky heuristics to choose
a variable to branch on, simplify a formula
before branching, and use efficient data
structures

- Another commonly used technique is local
search



Applications



THE ART OF COMPUTER PROGRAMMING

THE ART OF
COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 6A

A DRAFT OF
SECTION 7.2.2.2:
SATISFIABILITY

DONALD E. KNUTH  Stanford University



THE ART OF COMPUTER PROGRAMMING

Wow! — Section 7.2.2.2 has turned out to be the
longest section, by far, in The Art of Computer
Programming. The SAT problem is evidently a “killer
app,” because it is key to the solution of so many
problems. Consequently | can only hope that my

lengthy treatment does not also kill off my faithful
readers!

Donald Knuth
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CONFERENCE, COMPETITION, JOURNAL

- Annual SAT Conference (since 1996):
http://satisfiability.org

- Annual SAT Solving competitions (since
2002):
http://www.satcompetition.org/

- Journal on Satisfiability, Boolean Modeling
and Computation:
http://jsatjournal.org/


http://satisfiability.org
http://www.satcompetition.org/
http://jsatjournal.org/

MATH PROOFS
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Archive > Volume 534 > Issue 7605 > News > Aticle

Two-hundred-terabyte maths proof is largest ever

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?
Evelyn Lamb

26 May 2016
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GEOMETRY

Computer Search Settles 90-
Year-Old Math Problem

L By translating Keller’s conjecture into a computer-
friendly search for a type of graph, researchers have
finally resolved a problem about covering spaces with

tiles.
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SAT SOLVERS

from pycosat import solve

clauses = [ [-1, -2, -31, [1, -21, [2, -31, [3,
‘1]y [17 21 3] ]

print(solve(clauses))
print(solve(clauses[1:]))

UNSAT
[1, 2, 3]



N QUEENS

Is it possible to place n queensonann x n
board such that no two of them attack each
other?
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.....

012345678910MNM
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ENCODING AS SAT

» n% 0/1-variables: for 0 <i,j < n, xj = 1iff
queen is placed into cell (/,))

- For 0 < i < n,ith row contains > 1 queen:
(Xip =T0rxp="10r ... or Xjn_y) = 1).

- For 0 <i < n,ith row contains <1 queen:

VO <ji#jp<n: (xj, =0o0rx;=0).

- For 0 <j < n, jth column contains < 1 queen:
VO <iy#ip<n: (xjj=00rx,=0).

- For each pair (i, 1), (I2,J2) on diagonal:

(Xij, =0o0rx,, =0).



IMPLEMENTATION

from itertools import combinations, product
from pycosat import solve

n =10
clauses = []

# converts a pair of integers into a unique integer
def varnum(i, j):

assert i in range(n) and j in range(n)

return i * n + j + 1

# each row contains at least one queen
for i in range(n):
clauses.append([varnum(i, j) for j in range(n)])

# each row contains at most one queen
for i in range(n):
for j1, j2 in combinations(range(n), 2):
clauses.append([-varnum(i, j1), -varnum(i, j2)]1)

# each column contains at most one queen
for j in range(n):
for il, i2 in combinations(range(n), 2):
clauses.append([-varnum(il, j), -varnum(i2, j)])

# no two queens stay on the same diagonal
for i1, j1, i2, j2 in product(range(n), repeat=4)
if i1 i2:
continue

if abs(il - i2) == abs(jl - j2)
clauses.append([-varnum(il, j1),
-varnum(i2, j2)]1)

assignment = solve(clauses)
for i, j in product(range(n), repeat=2):
if assignment[varnum(i, j) - 1] > @:
print(j, end=' ')



