GEMS OF TCS

LINEAR PROGRAMMING

Sasha Golovnev September 26, 2022

 Optimization problems: among all solutions satisfying certain constraints find optimal one

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring
- Find minimum vertex cover

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring
- Find minimum vertex cover
- Linear programming: class of optimization problems where constraints and optimization criterion are linear functions

Avoiding Scurvy

Orange costs \$1,
 grapefruit costs \$1;
 we have budget of \$2/day

- Orange costs \$1, grapefruit costs \$1; we have budget of \$2/day
- Orange weighs 100gm, grapefruit weighs 200gm, we can carry 300gm

- Orange costs \$1, grapefruit costs \$1; we have budget of \$2/day
- Orange weighs 100gm, grapefruit weighs 200gm, we can carry 300gm
- Orange has 100gm of vitamin C, grapefruit has 150gm of vitamin C, maximize daily vitamin C intake.

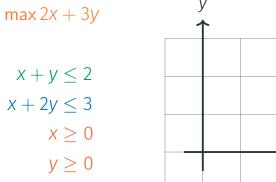
$$\max 2x + 3y$$

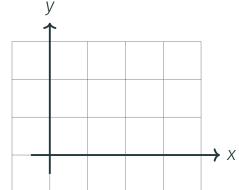
$$x + y \le 2$$

$$x + 2y \le 3$$

$$x \ge 0$$

$$y \ge 0$$





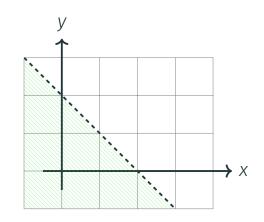
$$\max 2x + 3y$$

$$x + y \le 2$$

$$x + 2y \le 3$$

$$x \ge 0$$

 $y \ge 0$



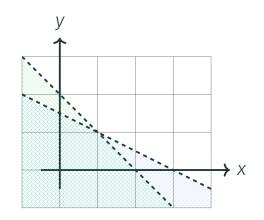
$$\max 2x + 3y$$

$$x + y \le 2$$

$$x + 2y \le 3$$

$$x \ge 0$$

$$y \ge 0$$



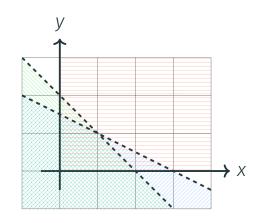
$$\max 2x + 3y$$

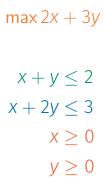
$$x + y \le 2$$

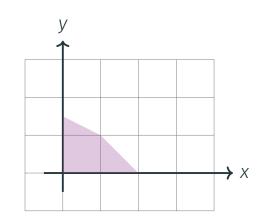
$$x + 2y \le 3$$

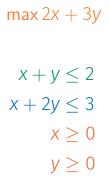
$$x \ge 0$$

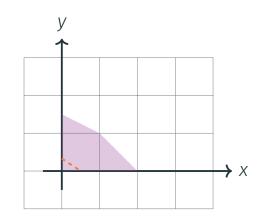
$$y \ge 0$$











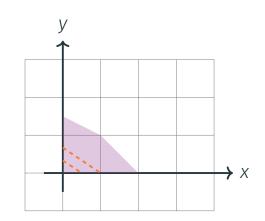
$$\max 2x + 3y$$

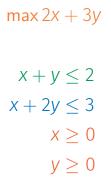
$$x + y \le 2$$

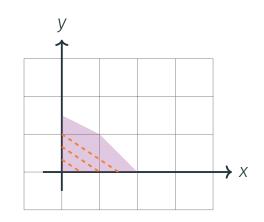
$$x + 2y \le 3$$

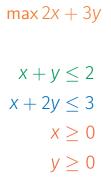
$$x \ge 0$$

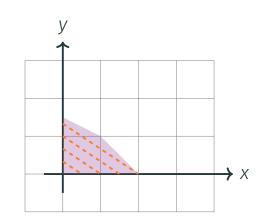
$$y \ge 0$$

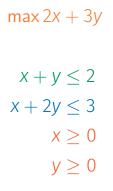


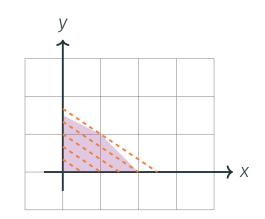












Profit Maximization

• We have 6 machines and 20 workers

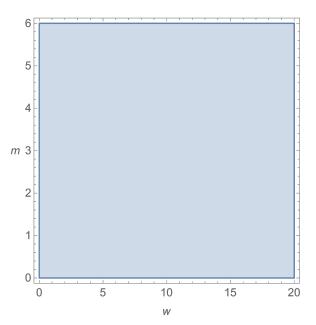
- · We have 6 machines and 20 workers
- · A machine takes two workers to operate

- · We have 6 machines and 20 workers
- · A machine takes two workers to operate
- Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour

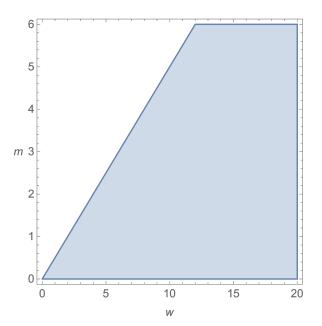
- · We have 6 machines and 20 workers
- · A machine takes two workers to operate
- Each machine produces 20 chocolates/hour,
 each worker produces 5 chocolates/hour
- We need to produce at most 100 chocolates/hour

- · We have 6 machines and 20 workers
- · A machine takes two workers to operate
- Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour
- We need to produce at most 100 chocolates/hour
- Each chocolate costs \$10, each worker gets \$40 per hour

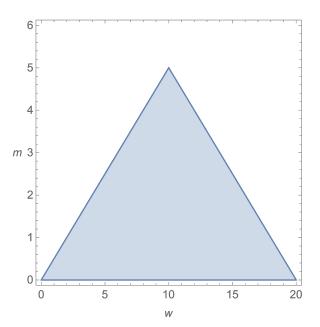
WORKERS AND MACHINES



TWO WORKERS OPERATE A MACHINE



CHOCOLATE DEMAND



Linear Classifier

LINEAR CLASSIFIER

• Given n_1 spam emails, and n_2 ham emails as points in \mathbb{R}^d

LINEAR CLASSIFIER

• Given n_1 spam emails, and n_2 ham emails as points in \mathbb{R}^d

• Find a linear function $h(a_1, \ldots, a_d)$ s.t.

LINEAR CLASSIFIER

• Given n_1 spam emails, and n_2 ham emails as points in \mathbb{R}^d

- Find a linear function $h(a_1, \ldots, a_d)$ s.t.
 - $h(a_1, \ldots, a_d) < 0$ for all spam emails
 - $h(a_1, \ldots, a_d) > 0$ for all ham emails

Linear Programming

• Find real numbers x_1, \ldots, x_n that satisfy linear constraints

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \ge b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \ge b_2$
 \ldots

$$a_{m1}X_1 + a_{m2}X_2 + \ldots + a_{mn}X_n \ge b_m$$

LINEAR PROGRAMMING

• Find real numbers $x_1, ..., x_n$ that satisfy linear constraints

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \ge b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \ge b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \ge b_m$$

So that linear objective is maximized

$$C_1X_1 + C_2X_2 + \ldots + C_nX_n$$

EQUIVALENT FORMULATIONS

Turn minimization problem into maximization problem:

min
$$C_1X_1 + C_2X_2 + ... - C_nX_n$$

max $-C_1X_1 - C_2X_2 - ... - C_nX_n$

EQUIVALENT FORMULATIONS

Turn minimization problem into maximization problem:

min
$$C_1X_1 + C_2X_2 + ... - C_nX_n$$

max $-C_1X_1 - C_2X_2 - ... - C_nX_n$

• Turn \leq into \geq :

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1$$

 $-a_{11}x_1 - a_{12}x_2 - \ldots - a_{1n}x_n \ge -b_1$

EQUIVALENT FORMULATIONS

Turn = into >:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \ge b_1$$

$$-a_{11}x_1 - a_{12}x_2 - \ldots - a_{1n}x_n \ge -b_1$$

Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$

Input is a matrix $A \in \mathbb{R}^{m \times n}$, and

vectors
$$b \in \mathbb{R}^m$$
 and $c \in \mathbb{R}^n$

$$Ax = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \vdots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 & \dots & a_{1n}x_n \\ \dots & \vdots & \dots \\ a_{m1}x_1 & \dots & a_{mn}x_n \end{bmatrix} \ge \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

Ax > b

Input is a matrix $A \in \mathbb{R}^{m \times n}$, and

vectors
$$b \in \mathbb{R}^m$$
 and $c \in \mathbb{R}^n$

$$Ax = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \vdots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 & \dots & a_{1n}x_n \\ \dots & \vdots & \dots \\ a_{m1}x_1 & \dots & a_{mn}x_n \end{bmatrix} \ge \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

$$_{nn}X_{n}$$

$$\left| \begin{array}{c} \geq \\ \vdots \\ \vdots \\ \end{array} \right|$$

Input is a matrix $A \in \mathbb{R}^{m \times n}$, and

vectors
$$b \in \mathbb{R}^m$$
 and $c \in \mathbb{R}^n$

$$1 \dots a_{1n} \Big]_{\Gamma_{N-1}} \Big[a_{11}x_1 \dots a_{1n} \Big]_{\Gamma_{N-1}}$$

vectors
$$b \in \mathbb{R}^m$$
 and $c \in \mathbb{R}^n$

$$\dots \quad a_{1n} \mid \Gamma_{X_1} \mid a_{11} X_1 \quad \dots \quad a_{1n} \mid \Gamma_{X_n} \mid a_{1n} \mid \dots \mid a_{nn} \mid$$

vectors
$$b \in \mathbb{R}$$
 and $c \in \mathbb{R}$

$$\vdots \qquad \begin{bmatrix} a_{1n} \\ \vdots \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \qquad \begin{bmatrix} a_{11}x_1 & \dots & a_{1n} \\ \vdots & \vdots & \vdots \end{bmatrix}$$

rs
$$b \in \mathbb{R}^m$$
 and $c \in \mathbb{R}^n$

maximize $cx = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix} = c_1x_1 + \dots + c_nx_n$

$$AX = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \vdots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 & \dots & a_{1n}x_n \\ \dots & \vdots & \dots \\ a_{m1}x_1 & \dots & a_{mn}x_n \end{bmatrix} \ge \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

 Kantorovich, 1939, started studying Linear Programming

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems
- Koopmans, 1947, showed how to use LP for analysis of economic theories

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems
- Koopmans, 1947, showed how to use LP for analysis of economic theories
- Kantorovich and Koopmans won Nobel Prize in Economics in 1971

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems
- Koopmans, 1947, showed how to use LP for analysis of economic theories
- Kantorovich and Koopmans won Nobel Prize in Economics in 1971
- Dantzig's algorithm is "One of top 10 algorithms of the 20th century"

SIMPLEX METHOD

Theorem

A linear function takes its maximum and minimum values on vertices

SIMPLEX METHOD

Theorem

A linear function takes its maximum and minimum values on vertices

Start at any vertex

SIMPLEX METHOD

Theorem

A linear function takes its maximum and minimum values on vertices

- Start at any vertex
- While there is an adjacent vertex with higher profit
 - Move to that vertex

CORNER CASES

No solutions

CORNER CASES

No solutions

Unbounded profit

Simplex method

- · Simplex method
- Many professional packages that implement efficient algorithms for LP

- · Simplex method
- Many professional packages that implement efficient algorithms for LP
- Ellipsoid method

- · Simplex method
- Many professional packages that implement efficient algorithms for LP
- Ellipsoid method
- Projective algorithm

- · Simplex method
- Many professional packages that implement efficient algorithms for LP
- · Ellipsoid method
- Projective algorithm
- · Recent results!

ELLIPSOID METHOD