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GÖDEL’S INCOMPLETENESS THEOREM



AXIOMATIZATION OF MATH

• Find a set of simple and obvious axioms

• Any proof could be (in principle) traced back
to this set of axioms
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EUCLID’S AXIOMS
• For any pair of distinct points, there is exactly
one line connecting them

• Any line segment can be extended to an
infinite line

• For any pair of distinct points, there is exactly
one circle centered at the first and touching
the second

• All right angles are equal to one another
• [The Parallel Postulate] Given a line L and a
point x, there is exactly one line parallel to L
that passes through x
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PEANO ARITHMETIC
• 0 is a natural number

• ∀x, x = x
• If x = y, then y = x
• If x = y and y = z, then x = z
• . . .
• ∀x, y, x = y iff Next(x) = Next(y)
• If x is a natural number, then Next(x) is a
natural number

• . . .
• ∀x, y, x+ Next(y) = Next(x+ y)
• ∀x, y, x · Next(y) = x · y+ x
• Induction
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NAIVE SET THEORY

• Set

• Membership in a Set

• Empty Set

• Equality



RUSSELL’S PARADOX

The barber is the ”one who shaves all those,
and those only, who do not shave themselves”.
The question is, does the barber shave himself?
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PRINCIPIA MATHEMATICA



ZFC



GÖDEL’S INCOMPLETENESS THEOREM

Any attempt to axiomatize all of mathematics is
guaranteed to fail



HALTING PROBLEM

• Function HALT is defined as follows.

• The first input is algorithm A
• The second input is string x
• HALT(A, x) = 1 if A halts on input x
• HALT(A, x) = 0 if A enters infinite loop on
input x

• HALT is undecidable (Lecture 13)
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