GEMS OF TCS

GÖDEL'S INCOMPLETENESS

Sasha Golovnev October 12, 2022

GÖDEL'S INCOMPLETENESS THEOREM

AXIOMATIZATION OF MATH

• Find a set of simple and obvious axioms

AXIOMATIZATION OF MATH

• Find a set of simple and obvious axioms

• Any proof could be (in principle) traced back to this set of axioms

• For any pair of distinct points, there is exactly one line connecting them

- For any pair of distinct points, there is exactly one line connecting them
- Any line segment can be extended to an infinite line

- For any pair of distinct points, there is exactly one line connecting them
- Any line segment can be extended to an infinite line
- For any pair of distinct points, there is exactly one circle centered at the first and touching the second

- For any pair of distinct points, there is exactly one line connecting them
- Any line segment can be extended to an infinite line
- For any pair of distinct points, there is exactly one circle centered at the first and touching the second
- All right angles are equal to one another

- For any pair of distinct points, there is exactly one line connecting them
- Any line segment can be extended to an infinite line
- For any pair of distinct points, there is exactly one circle centered at the first and touching the second
- All right angles are equal to one another
- [The Parallel Postulate] Given a line *L* and a point *x*, there is exactly one line parallel to *L* that passes through *x*

- For any pair of distinct points, there is exactly one line connecting them
- Any line segment can be extended to an infinite line
- For any pair of distinct points, there is exactly one circle centered at the first and touching the second
- All right angles are equal to one another
- [The Parallel Postulate] Given a line *L* and a point *x*, there is exactly one line parallel to *L* that passes through *x*

• 0 is a natural number

- 0 is a natural number
- $\forall x, x = x$

. . .

- If x = y, then y = x
- If x = y and y = z, then x = z

- 0 is a natural number
- $\forall x, x = x$

• . . .

. . .

- If x = y, then y = x
- If x = y and y = z, then x = z
- $\forall x, y, x = y \text{ iff Next}(x) = \text{Next}(y)$
- If x is a natural number, then Next(x) is a natural number

- 0 is a natural number
- $\forall x, x = x$

• . . .

• . . .

- If x = y, then y = x
- If x = y and y = z, then x = z
- $\forall x, y, x = y \text{ iff Next}(x) = \text{Next}(y)$
- If x is a natural number, then Next(x) is a natural number
- $\forall x, y, x + \operatorname{Next}(y) = \operatorname{Next}(x + y)$

- 0 is a natural number
- $\forall x, x = x$

• . . .

• . . .

- If x = y, then y = x
- If x = y and y = z, then x = z
- $\forall x, y, x = y \text{ iff Next}(x) = \text{Next}(y)$
- If x is a natural number, then Next(x) is a natural number
- $\forall x, y, x + \operatorname{Next}(y) = \operatorname{Next}(x + y)$
- $\forall x, y, x \cdot \operatorname{Next}(y) = x \cdot y + x$

- 0 is a natural number
- $\forall x, x = x$

• . . .

• . . .

- If x = y, then y = x
- If x = y and y = z, then x = z
- $\forall x, y, x = y \text{ iff Next}(x) = \text{Next}(y)$
- If x is a natural number, then Next(x) is a natural number
- $\forall x, y, x + \operatorname{Next}(y) = \operatorname{Next}(x + y)$
- $\forall x, y, x \cdot \operatorname{Next}(y) = x \cdot y + x$
- Induction

NAIVE SET THEORY

- Set
- Membership in a Set
- Empty Set
- Equality

RUSSELL'S PARADOX

RUSSELL'S PARADOX

The barber is the "one who shaves all those, and those only, who do not shave themselves". The question is, does the barber shave himself?

Principia Mathematica

ZFC

GÖDEL'S INCOMPLETENESS THEOREM

Any attempt to axiomatize all of mathematics is guaranteed to fail

• Function HALT is defined as follows.

- Function HALT is defined as follows.
 - The first input is algorithm A

- Function HALT is defined as follows.
 - The first input is algorithm A
 - The second input is string x

- Function HALT is defined as follows.
 - The first input is algorithm A
 - The second input is string x
 - HALT(A, x) = 1 if A halts on input x

- Function HALT is defined as follows.
 - The first input is algorithm A
 - The second input is string x
 - HALT(A, x) = 1 if A halts on input x
 - HALT(A, x) = 0 if A enters infinite loop on input x

- Function HALT is defined as follows.
 - The first input is algorithm A
 - The second input is string x
 - HALT(A, x) = 1 if A halts on input x
 - HALT(A, x) = 0 if A enters infinite loop on input x
- HALT is undecidable (Lecture 13)