
GEMS OF TCS
P VS NP

Sasha Golovnev
October 17, 2022

Search Problems

SEARCH PROBLEM

Definition
A search problem is defined by an algorithm C
that takes an instance I and a candidate
solution S, and runs in time polynomial in the
length of I. We say that S is a solution to I iff
C(S, I) = true.

SAT

Example

For SAT, I is a Boolean formula, S is an
assignment of Boolean constants to its
variables. The corresponding algorithm C
checks whether S satisfies all clauses of I.

CLASS NP

Definition
A search problem is defined by an algorithm C
that takes an instance I and a candidate
solution S, and runs in time polynomial in the
length of I. We say that S is a solution to I iff
C(S, I) = true.

Definition
NP is the class of all search problems.

CLASS NP

Definition
A search problem is defined by an algorithm C
that takes an instance I and a candidate
solution S, and runs in time polynomial in the
length of I. We say that S is a solution to I iff
C(S, I) = true.

Definition
NP is the class of all search problems.

• NP stands for “non-deterministic polynomial
time”: one can guess a solution, and then
verify its correctness in polynomial time

• In other words, the class NP contains all
problems whose solutions can be efficiently
verified

• NP stands for “non-deterministic polynomial
time”: one can guess a solution, and then
verify its correctness in polynomial time

• In other words, the class NP contains all
problems whose solutions can be efficiently
verified

CLASS P

Definition
P is the class of all search problems that can be
solved in polynomial time.

TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a path of
minimum total weight (length) visiting each
node exactly once

length: 6

5

2

4

2

2

1

13

3
3

TRAVELING SALESMAN PROBLEM
Given a complete weighted graph and a
budget b, find a path of total weight (length)
≤ b visiting each node exactly once

length: 6 ≤ b

5

2

4

2

2

1

13

3
3

MINIMUM SPANNING TREE
Given a complete weighted graph and a
budget b, connect all vertices by n− 1 edges of
minimum total weight (length)

length: 6

5

2

4

2

2

1

13

3
3

TSP AND MST

MST
Given n cities, connect
them by (n− 1) roads
of minimal total length

Can be solved
efficiently

TSP
Given n cities, connect
them in a path of
minimal total length

No polynomial
algorithm known!

TSP AND MST

MST
Given n cities, connect
them by (n− 1) roads
of minimal total length

Can be solved
efficiently

TSP
Given n cities, connect
them in a path of
minimal total length

No polynomial
algorithm known!

TSP AND MST

MST
Given n cities, connect
them by (n− 1) roads
of minimal total length

Can be solved
efficiently

TSP
Given n cities, connect
them in a path of
minimal total length

No polynomial
algorithm known!

TSP AND MST

MST
Given n cities, connect
them by (n− 1) roads
of minimal total length

Can be solved
efficiently

TSP
Given n cities, connect
them in a path of
minimal total length

No polynomial
algorithm known!

LONGEST PATH

Longest path

Input: A weighted graph, two vertices s, t, and a
budget b.

Output: A simple path (containing no repeated
vertices) of total length at least b.

Example

Example

Example

Example

Shortest path

Find a simple path from
s to t of total length at
most b

Can be solved
efficiently

Longest path

Find a simple path from
s to t of total length at
least b

No polynomial
algorithm known!

Shortest path

Find a simple path from
s to t of total length at
most b

Can be solved
efficiently

Longest path

Find a simple path from
s to t of total length at
least b

No polynomial
algorithm known!

Shortest path

Find a simple path from
s to t of total length at
most b

Can be solved
efficiently

Longest path

Find a simple path from
s to t of total length at
least b

No polynomial
algorithm known!

Shortest path

Find a simple path from
s to t of total length at
most b

Can be solved
efficiently

Longest path

Find a simple path from
s to t of total length at
least b

No polynomial
algorithm known!

INTEGER LINEAR PROGRAMMING PROBLEM

Integer linear programming

Input: A set of linear inequalities Ax ≤ b.
Output: Integer solution.

Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8

Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8 x1

x2

Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8 x1

x2

Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8 x1

x2

Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8 x1

x2

INTEGER LINEAR PROGRAMMING

LP
Find a real
solution of a system of
linear inequalities

Can be solved
efficiently

ILP
Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!

INTEGER LINEAR PROGRAMMING

LP
Find a real
solution of a system of
linear inequalities

Can be solved
efficiently

ILP
Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!

INTEGER LINEAR PROGRAMMING

LP
Find a real
solution of a system of
linear inequalities

Can be solved
efficiently

ILP
Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!

INTEGER LINEAR PROGRAMMING

LP
Find a real
solution of a system of
linear inequalities

Can be solved
efficiently

ILP
Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!

INDEPENDENT SET PROBLEM

Independent set

Input: A graph and a budget b.
Output: A subset of vertices of size at least b

such that no two of them are adjacent.

Example

Example

INDEPENDENT SETS IN A TREE

A maximum independent set in a tree can be
found by a simple greedy algorithm: it is safe to
take into a solution all the leaves.

Independent set in
a tree
Find an independent
set of size at least b in
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an independent
set of size at least b in
a given graph

No polynomial
algorithm known!

Independent set in
a tree
Find an independent
set of size at least b in
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an independent
set of size at least b in
a given graph

No polynomial
algorithm known!

Independent set in
a tree
Find an independent
set of size at least b in
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an independent
set of size at least b in
a given graph

No polynomial
algorithm known!

Independent set in
a tree
Find an independent
set of size at least b in
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an independent
set of size at least b in
a given graph

No polynomial
algorithm known!

NP

It turns out that all these hard problems are in
a sense a single hard problem: a polynomial
time algorithm for any of these problems can
be used to solve all of them in polynomial time!

Class P
Problems whose
solution can be
found efficiently

• MST
• Shortest path
• LP
• IS on trees

Class NP
Problems whose
solution can be verified
efficiently

• TSP
• Longest path
• ILP
• IS on graphs

Class P
Problems whose
solution can be
found efficiently

• MST
• Shortest path
• LP
• IS on trees

Class NP
Problems whose
solution can be verified
efficiently

• TSP
• Longest path
• ILP
• IS on graphs

Class P
Problems whose
solution can be
found efficiently

• MST
• Shortest path
• LP
• IS on trees

Class NP
Problems whose
solution can be verified
efficiently

• TSP
• Longest path
• ILP
• IS on graphs

Class P
Problems whose
solution can be
found efficiently

• MST
• Shortest path
• LP
• IS on trees

Class NP
Problems whose
solution can be verified
efficiently

• TSP
• Longest path
• ILP
• IS on graphs

The main open problem in Computer Science

Is P equal to NP?

Millenium Prize Problem
Clay Mathematics Institute: $1M prize for
solving the problem

The main open problem in Computer Science

Is P equal to NP?

Millenium Prize Problem
Clay Mathematics Institute: $1M prize for
solving the problem

• If P=NP, then all search problems can be
solved in polynomial time.

• If P̸=NP, then there exist search problems that
cannot be solved in polynomial time.

• If P=NP, then all search problems can be
solved in polynomial time.

• If P̸=NP, then there exist search problems that
cannot be solved in polynomial time.

Reductions

INFORMALLY

We say that a search problem A is reduced to a
search problem B and write A→ B, if a
polynomial time algorithm for B can be used
(as a black box) to solve A in polynomial time.

REDUCTION: A→ B

instance I of A

REDUCTION: A→ B

instance I of A

Algorithm for B

Algorithm for A

REDUCTION: A→ B

instance I of A

Algorithm for B

Algorithm for A f

REDUCTION: A→ B

instance I of A

Algorithm for B

Algorithm for A f

instance f(I) of B

REDUCTION: A→ B

instance I of A

Algorithm for B

Algorithm for A f

instance f(I) of B

no solution to f(I)

REDUCTION: A→ B

instance I of A

Algorithm for B

Algorithm for A f

instance f(I) of B

no solution to f(I)

no solution to I

REDUCTION: A→ B

instance I of A

Algorithm for B

Algorithm for A f

instance f(I) of B

no solution to f(I)

no solution to I

solution S to f(I)

REDUCTION: A→ B

instance I of A

Algorithm for B

Algorithm for A f

instance f(I) of B

no solution to f(I)

no solution to I

solution S to f(I)

h

REDUCTION: A→ B

instance I of A

Algorithm for B

Algorithm for A f

instance f(I) of B

no solution to f(I)

no solution to I

solution S to f(I)

h

solution h(S) to I

FORMALLY

Definition
We say that a search problem A is reduced to a
search problem B and write A→ B, if there
exists a polynomial time algorithm f that
converts any instance I of A into an instance f(I)
of B, together with a polynomial time algorithm
h that converts any solution S to f(I) back to a
solution h(S) to A. If there is no solution to f(I),
then there is no solution to I.

GRAPH OF SEARCH PROBLEMS

NP

GRAPH OF SEARCH PROBLEMS

NP

NP-COMPLETE PROBLEMS
Definition
A search problem is called NP-complete if all
other search problems reduce to it.

NP

NP-COMPLETE PROBLEMS
Definition
A search problem is called NP-complete if all
other search problems reduce to it.

NP

Do they exist?

It’s not at all immediate that NP-complete
problems even exist. We’ll see later that all
hard problems that we’ve seen in the previous
part are in fact NP-complete!

Two ways of using A→ B:

• if B is easy (can be solved in polynomial
time), then so is A

• if A is hard (cannot be solved in polynomial
time), then so is B

REDUCTIONS COMPOSE

Lemma
If A→ B and B→ C, then A→ C.

PICTORIALLY

NP

PICTORIALLY

NP

PICTORIALLY

NP

SHOWING NP-COMPLETENESS
Corollary

If A→ B and A is NP-complete, then so is B.

SHOWING NP-COMPLETENESS
Corollary

If A→ B and A is NP-complete, then so is B.

NP

A B

SHOWING NP-COMPLETENESS
Corollary

If A→ B and A is NP-complete, then so is B.

NP

A B

SHOWING NP-COMPLETENESS
Corollary

If A→ B and A is NP-complete, then so is B.

NP

A B

SHOWING NP-COMPLETENESS
Corollary

If A→ B and A is NP-complete, then so is B.

NP

A B

SHOWING NP-COMPLETENESS
Corollary

If A→ B and A is NP-complete, then so is B.

NP

A B

NP-Completeness of SAT

Goal
Show that every search problem reduces to SAT.

Instead, we show that any problem reduces to
Circuit SAT problem, which, in turn, reduces
to SAT.

Goal
Show that every search problem reduces to SAT.

Instead, we show that any problem reduces to
Circuit SAT problem, which, in turn, reduces
to SAT.

Circuit

x y z 1

∧ ∨

¬

∨

∧

∨ output

Definition
A circuit is a directed acyclic graph of in-degree
at most 2. Nodes of in-degree 0 are called
inputs and are marked by Boolean variables
and constants. Nodes of in-degree 1 and 2 are
called gates: gates of in-degree 1 are labeled
with NOT, gates of in-degree 2 are labeled with
AND or OR. One of the sinks is marked as
output.

Circuit-SAT

Input: A circuit.
Output: An assignment of Boolean values to the

input variables of the circuit that makes the
output true.

SAT is a special case of Circuit-SAT as a SAT
formula can be represented as a circuit:

Example: (x ∨ y ∨ z)(y ∨ x)

x y z

∨¬

∨∨

∧ output

CIRCUIT-SAT→ SAT

To reduce Circuit-SAT to SAT, we need to design
a polynomial time algorithm that for a given
circuit outputs a SAT formula which is
satisfiable, if and only if the circuit is satisfiable

IDEA

• Introduce a Boolean variable for each gate

• For each gate, write down a few clauses that
describe the relationship between this gate
and its direct predecessors

NOT GATES

¬g

h

(h ∨ g)(h ∨ g)

AND GATES

∧g

h1 h2

(h1 ∨ g)(h2 ∨ g)(h1 ∨ h2 ∨ g)

OR GATES

∨g

h1 h2

(h1 ∨ g)(h2 ∨ g)(h1 ∨ h2 ∨ g)

OUTPUT GATE

g output (g)

• The resulting SAT formula is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of g is
equal to the value of the gate labeled with
g in the circuit

• Therefore, the SAT formula and the circuit
are equisatisfiable

• The reduction takes polynomial time

• The resulting SAT formula is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of g is
equal to the value of the gate labeled with
g in the circuit

• Therefore, the SAT formula and the circuit
are equisatisfiable

• The reduction takes polynomial time

• The resulting SAT formula is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of g is
equal to the value of the gate labeled with
g in the circuit

• Therefore, the SAT formula and the circuit
are equisatisfiable

• The reduction takes polynomial time

Goal
Reduce every search problem to Circuit-SAT.

• Let A be a search problem
• We know that there exists an algorithm C
that takes an instance I of A and a
candidate solution S and checks whether S
is a solution for I in time polynomial in |I|

• In particular, |S| is polynomial in |I|

Goal
Reduce every search problem to Circuit-SAT.

• Let A be a search problem

• We know that there exists an algorithm C
that takes an instance I of A and a
candidate solution S and checks whether S
is a solution for I in time polynomial in |I|

• In particular, |S| is polynomial in |I|

Goal
Reduce every search problem to Circuit-SAT.

• Let A be a search problem
• We know that there exists an algorithm C
that takes an instance I of A and a
candidate solution S and checks whether S
is a solution for I in time polynomial in |I|

• In particular, |S| is polynomial in |I|

Goal
Reduce every search problem to Circuit-SAT.

• Let A be a search problem
• We know that there exists an algorithm C
that takes an instance I of A and a
candidate solution S and checks whether S
is a solution for I in time polynomial in |I|

• In particular, |S| is polynomial in |I|

TURN AN ALGORITHM INTO A CIRCUIT

• Note that a computer is in fact a circuit
implemented on a chip

• Each step of the algorithm C(I, S) is
performed by this computer’s circuit

• This gives a circuit of size polynomial in |I|
that has input bits for I and S and outputs
whether S is a solution for I (a separate
circuit for each input length)

TURN AN ALGORITHM INTO A CIRCUIT

• Note that a computer is in fact a circuit
implemented on a chip

• Each step of the algorithm C(I, S) is
performed by this computer’s circuit

• This gives a circuit of size polynomial in |I|
that has input bits for I and S and outputs
whether S is a solution for I (a separate
circuit for each input length)

TURN AN ALGORITHM INTO A CIRCUIT

• Note that a computer is in fact a circuit
implemented on a chip

• Each step of the algorithm C(I, S) is
performed by this computer’s circuit

• This gives a circuit of size polynomial in |I|
that has input bits for I and S and outputs
whether S is a solution for I (a separate
circuit for each input length)

REDUCTION

To solve an instance I of the problem A:

• take a circuit corresponding to C(I, ·)

• the inputs to this circuit encode candidate
solutions

• use a Circuit-SAT algorithm for this circuit
to find a solution (if exists)

REDUCTION

To solve an instance I of the problem A:

• take a circuit corresponding to C(I, ·)
• the inputs to this circuit encode candidate
solutions

• use a Circuit-SAT algorithm for this circuit
to find a solution (if exists)

REDUCTION

To solve an instance I of the problem A:

• take a circuit corresponding to C(I, ·)
• the inputs to this circuit encode candidate
solutions

• use a Circuit-SAT algorithm for this circuit
to find a solution (if exists)

SUMMARY

SAT

Circuit-SAT

SUMMARY

SAT

Circuit-SAT

