### GEMS OF TCS

#### RANDOMNESS

Sasha Golovnev October 31, 2022

#### Deterministic Algorithms

#### Randomized Algorithms

#### MAXIMUM CUT

• Undirected graph G, vertices V, edges E

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition:  $S \subseteq V, \overline{S} \subseteq V$

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition:  $S \subseteq V, \overline{S} \subseteq V$
- Cut  $\delta(S) = \{(u, v) \in E : u \in S, v \in \overline{S}\}$

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition:  $S \subseteq V, \overline{S} \subseteq V$
- Cut  $\delta(S) = \{(u, v) \in E : u \in S, v \in \overline{S}\}$
- Max-CUT:  $\max_{S \subseteq V} \delta(S)$

#### RANDOMIZED APPROXIMATION

• Pick independent uniform subsets  $S_1, \ldots, S_k \subseteq V$  for  $k = 100 \log n$ 

#### RANDOMIZED APPROXIMATION

- Pick independent uniform subsets  $S_1, \ldots, S_k \subseteq V$  for  $k = 100 \log n$
- Output the subset with maximum cut  $\delta(S_i)$

#### RANDOMIZED APPROXIMATION

- Pick independent uniform subsets  $S_1, \ldots, S_k \subseteq V$  for  $k = 100 \log n$
- Output the subset with maximum cut  $\delta(S_i)$
- Lecture 3: With probability  $1 \frac{1}{10^{10}n}$ , we cut at least |E|/2.04 edges

#### BPP

#### Definition

# **P**—problems that can be solved in polynomial time

#### BPP

#### Definition

**P**—problems that can be solved in polynomial time

#### Definition

**NP**—problems whose solution can be verified in polynomial time

#### BPP

#### Definition

**P**—problems that can be solved in polynomial time

#### Definition

**NP**—problems whose solution can be verified in polynomial time

#### Definition

**BPP**—problems that can be solved in polynomial time using randomness with probability  $\geq 2/3$ 

#### CLOUD SYNC

• Synchronize local files to the cloud

#### CLOUD SYNC

• Synchronize local files to the cloud

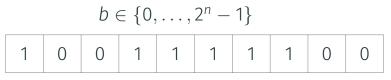
• Has file been changed? File length: *n* bits

# RANDOMIZED ALGORITHM local file

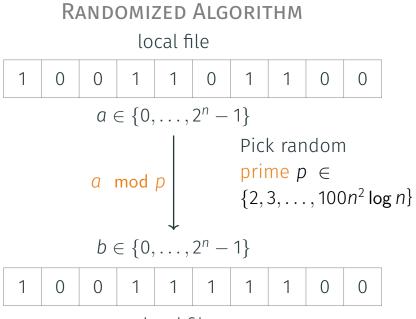
|  | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |  |
|--|---|---|---|---|---|---|---|---|---|---|--|
|--|---|---|---|---|---|---|---|---|---|---|--|

| 1 0 0 1 1 1 1 0 | ) () |
|-----------------|------|
|-----------------|------|

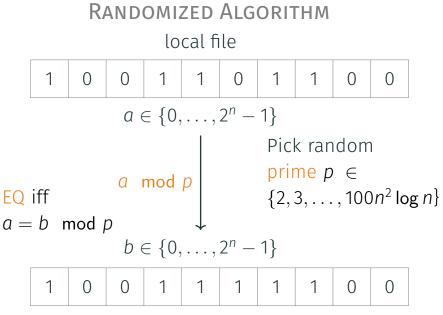
cloud file


# RANDOMIZED ALGORITHMlocal file1001100 $a \in \{0, \dots, 2^n - 1\}$

| 1          | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
|------------|---|---|---|---|---|---|---|---|---|
| cloud file |   |   |   |   |   |   |   |   |   |


# RANDOMIZED ALGORITHMlocal file101100 $a \in \{0, \dots, 2^n - 1\}$




RANDOMIZED ALGORITHMlocal file101100
$$a \in \{0, \dots, 2^n - 1\}$$
Pick random  
prime  $p \in \{2, 3, \dots, 100n^2 \log n\}$ 



cloud file



cloud file



cloud file

#### ANALYSIS

#### ANALYSIS

• If a = b, then for every  $p, a = b \mod p$ . We always output EQ!

#### ANALYSIS

• If a = b, then for every  $p, a = b \mod p$ . We always output EQ!

• Lecture 3: If  $a \neq b$ , then with probability  $\approx 1 - \frac{1}{100n}$  we output NO!

#### Definition

**BPP**—problems that can be solved in polynomial time using randomness with probability  $\geq 2/3$ 

### RP

#### Definition

**BPP**—problems that can be solved in polynomial time using randomness with probability  $\geq 2/3$ 

#### Definition

**RP**—problems that can be solved in polynomial time using randomness s.t.

- If correct answer is 1, then algorithm outputs 1 w. p.  $\geq 2/3$ ;
- If correct answer is 0, then algorithm outputs 0 always.

#### ERROR REDUCTION FOR RP

#### **ERROR REDUCTION FOR BPP**

#### Chernoff Bound

#### LAS VEGAS ALGORITHMS

## $\mathsf{BPP}\subseteq \mathsf{P}/_{\mathsf{poly}}$