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EXACT ALGORITHMS
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• Intelligent exhaustive search: finding optimal
solution without going through all candidate
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Traveling Salesman Problem
(TSP)



TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once
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ALGORITHMS

• Classical optimization problem with
countless number of real life applications
(see Lecture 1)

• No polynomial time algorithms known
• We’ll see exact exponential-time
algorithms
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BRUTE FORCE SOLUTION

A naive algorithm just checks all possible ∼ n!
cycles.

We’ll see

• Use dynamic programming to solve TSP in
O(n2 · 2n)

• The running time is exponential, but ismuch
better than n!
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DYNAMIC PROGRAMMING

• Dynamic programming is one of the most
powerful algorithmic techniques

• Rough idea: express a solution for
a problem through solutions for smaller
subproblems

• Solve subproblems one by one. Store
solutions to subproblems in a table to
avoid recomputing the same thing again



DYNAMIC PROGRAMMING

• Dynamic programming is one of the most
powerful algorithmic techniques

• Rough idea: express a solution for
a problem through solutions for smaller
subproblems

• Solve subproblems one by one. Store
solutions to subproblems in a table to
avoid recomputing the same thing again



DYNAMIC PROGRAMMING

• Dynamic programming is one of the most
powerful algorithmic techniques

• Rough idea: express a solution for
a problem through solutions for smaller
subproblems

• Solve subproblems one by one. Store
solutions to subproblems in a table to
avoid recomputing the same thing again



SUBPROBLEMS

• For a subset of vertices S ⊆ {1, . . . ,n}
containing the vertex 1 and a vertex i ∈ S,
let C(S, i) be the length of the shortest path
that starts at 1, ends at i and visits all
vertices from S exactly once

• C({1}, 1) = 0 and C(S, 1) = +∞ when |S| > 1
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RECURRENCE RELATION

• Consider the second-to-last vertex j on the
required shortest path from 1 to i visiting
all vertices from S

• The subpath from 1 to j is the shortest one
visiting all vertices from S−{i} exactly once

• Hence
C(S, i) = minj{C(S− {i}, j) + dji}, where the
minimum is over all j ∈ S such that j ̸= i
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ORDER OF SUBPROBLEMS

• Need to process all subsets S ⊆ {1, . . . ,n}
in an order that guarantees that when
computing the value of C(S, i), the values of
C(S− {i}, j) have already been computed

• For example, we can process subsets in
order of increasing size
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ALGORITHM

C(∗, ∗)← +∞

C({1}, 1)← 0

for s from 2 to n:

for all 1 ∈ S ⊆ {1, . . . ,n} of size s:

for all i ∈ S, i ̸= 1:

for all j ∈ S, j ̸= i

C(S, i)← min{C(S, i), C(S− {i}, j) + dji}

return mini{C({1, . . . ,n}, i) + di,1}
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Satisfiability Problem (SAT)
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k-SAT

ϕ(x1, . . . , xn) =(x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧
. . . ∧

(x2 ∨ ¬x3 ∨ . . . ∨ x8)

ϕ is satisfiable if

∃x ∈ {0, 1}n : ϕ(x) = 1 .

Otherwise, ϕ is unsatisfiable

n Boolean vars, m clauses

k-SAT is SAT where clause length ≤k
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But how hard is SAT?



SAT IN 2n

• O∗(·) suppresses polynomial factors in the
input length:

2nn10m2 = O∗(2n)

• SAT can be solved in time O∗(2n)

• We don’t know how to solve SAT exponentially
faster: in time O∗(1.999n)
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3-SAT

• (x1 ∨ x2 ∨ x9) ∧ . . . ∧ (x2 ∨ ¬x3 ∨ x8)

• Consider three sub-problems:
• x1 = 1
• x1 = 0, x2 = 1
• x1 = 0, x2 = 0, x9 = 1

• The original formula is SAT iff at least one of
these formulas is SAT
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3-SAT. ANALYSIS
• T(n) ≤ T(n− 1) + T(n− 2) + T(n− 3)

• T(n) ≤ 1.85n :

T(n) ≤ T(n− 1) + T(n− 2) + T(n− 3)
≤ 1.85n−1 + 1.85n−2 + 1.85n−3

= 1.85n( 1
1.85 +

1
1.852 +

1
1.853 )

< 1.85n(0.991)
< 1.85n

• There are even faster algorithms: 1.308n
[HKZZ19]
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How hard can SAT be?
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