
GEMS OF TCS
EXPONENTIAL-TIME ALGORITHMS

Sasha Golovnev
September 12, 2022

EXACT ALGORITHMS

• We need to solve problem exactly

• Problem takes exponential time solve exactly

• Intelligent exhaustive search: finding optimal
solution without going through all candidate
solutions

EXACT ALGORITHMS

• We need to solve problem exactly

• Problem takes exponential time solve exactly

• Intelligent exhaustive search: finding optimal
solution without going through all candidate
solutions

EXACT ALGORITHMS

• We need to solve problem exactly

• Problem takes exponential time solve exactly

• Intelligent exhaustive search: finding optimal
solution without going through all candidate
solutions

RUNNING TIME

running time: n n2 n3 n!

less than 109: 109 104.5 103 12

running time: n! 4n 2n 1.308n

less than 109: 12 14 29 77

RUNNING TIME

running time: n n2 n3 n!

less than 109: 109 104.5 103 12

running time: n! 4n 2n 1.308n

less than 109: 12 14 29 77

Traveling Salesman Problem
(TSP)

TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

5

2

4

2

2

1

13

3
3

TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

5

2

4

2

2

1

13

3
3

length: 9

ALGORITHMS

• Classical optimization problem with
countless number of real life applications
(see Lecture 1)

• No polynomial time algorithms known
• We’ll see exact exponential-time
algorithms

ALGORITHMS

• Classical optimization problem with
countless number of real life applications
(see Lecture 1)

• No polynomial time algorithms known

• We’ll see exact exponential-time
algorithms

ALGORITHMS

• Classical optimization problem with
countless number of real life applications
(see Lecture 1)

• No polynomial time algorithms known
• We’ll see exact exponential-time
algorithms

BRUTE FORCE SOLUTION

A naive algorithm just checks all possible ∼ n!
cycles.

We’ll see

• Use dynamic programming to solve TSP in
O(n2 · 2n)

• The running time is exponential, but ismuch
better than n!

BRUTE FORCE SOLUTION

A naive algorithm just checks all possible ∼ n!
cycles.

We’ll see

• Use dynamic programming to solve TSP in
O(n2 · 2n)

• The running time is exponential, but ismuch
better than n!

BRUTE FORCE SOLUTION

A naive algorithm just checks all possible ∼ n!
cycles.

We’ll see

• Use dynamic programming to solve TSP in
O(n2 · 2n)

• The running time is exponential, but ismuch
better than n!

DYNAMIC PROGRAMMING

• Dynamic programming is one of the most
powerful algorithmic techniques

• Rough idea: express a solution for
a problem through solutions for smaller
subproblems

• Solve subproblems one by one. Store
solutions to subproblems in a table to
avoid recomputing the same thing again

DYNAMIC PROGRAMMING

• Dynamic programming is one of the most
powerful algorithmic techniques

• Rough idea: express a solution for
a problem through solutions for smaller
subproblems

• Solve subproblems one by one. Store
solutions to subproblems in a table to
avoid recomputing the same thing again

DYNAMIC PROGRAMMING

• Dynamic programming is one of the most
powerful algorithmic techniques

• Rough idea: express a solution for
a problem through solutions for smaller
subproblems

• Solve subproblems one by one. Store
solutions to subproblems in a table to
avoid recomputing the same thing again

SUBPROBLEMS

• For a subset of vertices S ⊆ {1, . . . ,n}
containing the vertex 1 and a vertex i ∈ S,
let C(S, i) be the length of the shortest path
that starts at 1, ends at i and visits all
vertices from S exactly once

• C({1}, 1) = 0 and C(S, 1) = +∞ when |S| > 1

SUBPROBLEMS

• For a subset of vertices S ⊆ {1, . . . ,n}
containing the vertex 1 and a vertex i ∈ S,
let C(S, i) be the length of the shortest path
that starts at 1, ends at i and visits all
vertices from S exactly once

• C({1}, 1) = 0 and C(S, 1) = +∞ when |S| > 1

RECURRENCE RELATION

• Consider the second-to-last vertex j on the
required shortest path from 1 to i visiting
all vertices from S

• The subpath from 1 to j is the shortest one
visiting all vertices from S−{i} exactly once

• Hence
C(S, i) = minj{C(S− {i}, j) + dji}, where the
minimum is over all j ∈ S such that j ̸= i

RECURRENCE RELATION

• Consider the second-to-last vertex j on the
required shortest path from 1 to i visiting
all vertices from S

• The subpath from 1 to j is the shortest one
visiting all vertices from S−{i} exactly once

• Hence
C(S, i) = minj{C(S− {i}, j) + dji}, where the
minimum is over all j ∈ S such that j ̸= i

RECURRENCE RELATION

• Consider the second-to-last vertex j on the
required shortest path from 1 to i visiting
all vertices from S

• The subpath from 1 to j is the shortest one
visiting all vertices from S−{i} exactly once

• Hence
C(S, i) = minj{C(S− {i}, j) + dji}, where the
minimum is over all j ∈ S such that j ̸= i

ORDER OF SUBPROBLEMS

• Need to process all subsets S ⊆ {1, . . . ,n}
in an order that guarantees that when
computing the value of C(S, i), the values of
C(S− {i}, j) have already been computed

• For example, we can process subsets in
order of increasing size

ORDER OF SUBPROBLEMS

• Need to process all subsets S ⊆ {1, . . . ,n}
in an order that guarantees that when
computing the value of C(S, i), the values of
C(S− {i}, j) have already been computed

• For example, we can process subsets in
order of increasing size

ALGORITHM

C(∗, ∗)← +∞

C({1}, 1)← 0

for s from 2 to n:

for all 1 ∈ S ⊆ {1, . . . ,n} of size s:

for all i ∈ S, i ̸= 1:

for all j ∈ S, j ̸= i

C(S, i)← min{C(S, i), C(S− {i}, j) + dji}

return mini{C({1, . . . ,n}, i) + di,1}

ALGORITHM

C(∗, ∗)← +∞

C({1}, 1)← 0

for s from 2 to n:

for all 1 ∈ S ⊆ {1, . . . ,n} of size s:

for all i ∈ S, i ̸= 1:

for all j ∈ S, j ̸= i

C(S, i)← min{C(S, i), C(S− {i}, j) + dji}

return mini{C({1, . . . ,n}, i) + di,1}

ALGORITHM

C(∗, ∗)← +∞

C({1}, 1)← 0

for s from 2 to n:

for all 1 ∈ S ⊆ {1, . . . ,n} of size s:

for all i ∈ S, i ̸= 1:

for all j ∈ S, j ̸= i

C(S, i)← min{C(S, i), C(S− {i}, j) + dji}

return mini{C({1, . . . ,n}, i) + di,1}

ALGORITHM

C(∗, ∗)← +∞

C({1}, 1)← 0

for s from 2 to n:

for all 1 ∈ S ⊆ {1, . . . ,n} of size s:

for all i ∈ S, i ̸= 1:

for all j ∈ S, j ̸= i

C(S, i)← min{C(S, i), C(S− {i}, j) + dji}

return mini{C({1, . . . ,n}, i) + di,1}

Satisfiability Problem (SAT)

SAT

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

(x1∨x2∨x3)∧(x1∨¬x2)∧(¬x1∨x3)∧(x2∨¬x3)∧(¬x1∨¬x2∨¬x3)

SAT

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

(x1∨x2∨x3)∧(x1∨¬x2)∧(¬x1∨x3)∧(x2∨¬x3)∧(¬x1∨¬x2∨¬x3)

k-SAT

ϕ(x1, . . . , xn) =(x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧
. . . ∧

(x2 ∨ ¬x3 ∨ . . . ∨ x8)

ϕ is satisfiable if

∃x ∈ {0, 1}n : ϕ(x) = 1 .

Otherwise, ϕ is unsatisfiable

n Boolean vars, m clauses

k-SAT is SAT where clause length ≤k

k-SAT

ϕ(x1, . . . , xn) =(x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧
. . . ∧

(x2 ∨ ¬x3 ∨ . . . ∨ x8)

ϕ is satisfiable if

∃x ∈ {0, 1}n : ϕ(x) = 1 .

Otherwise, ϕ is unsatisfiable

n Boolean vars, m clauses

k-SAT is SAT where clause length ≤k

k-SAT

ϕ(x1, . . . , xn) =(x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧
. . . ∧

(x2 ∨ ¬x3 ∨ . . . ∨ x8)

ϕ is satisfiable if

∃x ∈ {0, 1}n : ϕ(x) = 1 .

Otherwise, ϕ is unsatisfiable

n Boolean vars, m clauses

k-SAT is SAT where clause length ≤k

k-SAT

ϕ(x1, . . . , xn) =(x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧
. . . ∧

(x2 ∨ ¬x3 ∨ . . . ∨ x8)

ϕ is satisfiable if

∃x ∈ {0, 1}n : ϕ(x) = 1 .

Otherwise, ϕ is unsatisfiable

n Boolean vars, m clauses

k-SAT is SAT where clause length ≤k

k-SAT. EXAMPLES

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

(x1) ∧ (¬x2) ∧ (x3) ∧ (¬x1)

k-SAT. EXAMPLES

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

(x1) ∧ (¬x2) ∧ (x3) ∧ (¬x1)

COMPLEXITY OF SAT

P1-SAT
2-SAT

NP3-SAT

...
k-SAT
SAT

P1-SAT
2-SAT

COMPLEXITY OF SAT

P1-SAT
2-SAT

NP3-SAT

...
k-SAT
SAT

P1-SAT
2-SAT

But how hard is SAT?

SAT IN 2n

• O∗(·) suppresses polynomial factors in the
input length:

2nn10m2 = O∗(2n)

• SAT can be solved in time O∗(2n)

• We don’t know how to solve SAT exponentially
faster: in time O∗(1.999n)

SAT IN 2n

• O∗(·) suppresses polynomial factors in the
input length:

2nn10m2 = O∗(2n)

• SAT can be solved in time O∗(2n)

• We don’t know how to solve SAT exponentially
faster: in time O∗(1.999n)

SAT IN 2n

• O∗(·) suppresses polynomial factors in the
input length:

2nn10m2 = O∗(2n)

• SAT can be solved in time O∗(2n)

• We don’t know how to solve SAT exponentially
faster: in time O∗(1.999n)

3-SAT

• (x1 ∨ x2 ∨ x9) ∧ . . . ∧ (x2 ∨ ¬x3 ∨ x8)

• Consider three sub-problems:
• x1 = 1
• x1 = 0, x2 = 1
• x1 = 0, x2 = 0, x9 = 1

• The original formula is SAT iff at least one of
these formulas is SAT

3-SAT

• (x1 ∨ x2 ∨ x9) ∧ . . . ∧ (x2 ∨ ¬x3 ∨ x8)

• Consider three sub-problems:
• x1 = 1
• x1 = 0, x2 = 1
• x1 = 0, x2 = 0, x9 = 1

• The original formula is SAT iff at least one of
these formulas is SAT

3-SAT

• (x1 ∨ x2 ∨ x9) ∧ . . . ∧ (x2 ∨ ¬x3 ∨ x8)

• Consider three sub-problems:
• x1 = 1
• x1 = 0, x2 = 1
• x1 = 0, x2 = 0, x9 = 1

• The original formula is SAT iff at least one of
these formulas is SAT

3-SAT

• (x1 ∨ x2 ∨ x9) ∧ . . . ∧ (x2 ∨ ¬x3 ∨ x8)

• Consider three sub-problems:
• x1 = 1
• x1 = 0, x2 = 1
• x1 = 0, x2 = 0, x9 = 1

• The original formula is SAT iff at least one of
these formulas is SAT

3-SAT. ANALYSIS
• T(n) ≤ T(n− 1) + T(n− 2) + T(n− 3)

• T(n) ≤ 1.85n :

T(n) ≤ T(n− 1) + T(n− 2) + T(n− 3)
≤ 1.85n−1 + 1.85n−2 + 1.85n−3

= 1.85n(1
1.85 +

1
1.852 +

1
1.853)

< 1.85n(0.991)
< 1.85n

• There are even faster algorithms: 1.308n
[HKZZ19]

3-SAT. ANALYSIS
• T(n) ≤ T(n− 1) + T(n− 2) + T(n− 3)
• T(n) ≤ 1.85n :

T(n) ≤ T(n− 1) + T(n− 2) + T(n− 3)
≤ 1.85n−1 + 1.85n−2 + 1.85n−3

= 1.85n(1
1.85 +

1
1.852 +

1
1.853)

< 1.85n(0.991)
< 1.85n

• There are even faster algorithms: 1.308n
[HKZZ19]

3-SAT. ANALYSIS
• T(n) ≤ T(n− 1) + T(n− 2) + T(n− 3)
• T(n) ≤ 1.85n :

T(n) ≤ T(n− 1) + T(n− 2) + T(n− 3)
≤ 1.85n−1 + 1.85n−2 + 1.85n−3

= 1.85n(1
1.85 +

1
1.852 +

1
1.853)

< 1.85n(0.991)
< 1.85n

• There are even faster algorithms: 1.308n
[HKZZ19]

3-SAT. ANALYSIS
• T(n) ≤ T(n− 1) + T(n− 2) + T(n− 3)
• T(n) ≤ 1.85n :

T(n) ≤ T(n− 1) + T(n− 2) + T(n− 3)
≤ 1.85n−1 + 1.85n−2 + 1.85n−3

= 1.85n(1
1.85 +

1
1.852 +

1
1.853)

< 1.85n(0.991)
< 1.85n

• There are even faster algorithms: 1.308n
[HKZZ19]

How hard can SAT be?

ALGORITHMIC COMPLEXITY OF SAT

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n
...

k-SAT 2n(1−O(1/k))

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n
...

k-SAT 2n(1−O(1/k))
SAT 2n

O(m)
O(m)

1-SAT
2-SAT

ALGORITHMIC COMPLEXITY OF SAT

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n
...

k-SAT 2n(1−O(1/k))

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n
...

k-SAT 2n(1−O(1/k))
SAT 2n

O(m)
O(m)

1-SAT
2-SAT

ALGORITHMIC COMPLEXITY OF SAT

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n
...

k-SAT 2n(1−O(1/k))

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n
...

k-SAT 2n(1−O(1/k))
SAT 2n

O(m)
O(m)

1-SAT
2-SAT

ALGORITHMIC COMPLEXITY OF SAT

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n
...

k-SAT 2n(1−O(1/k))

O(m)
O(m)

1-SAT
2-SAT

3-SAT 1.308n
...

k-SAT 2n(1−O(1/k))
SAT 2n

O(m)
O(m)

1-SAT
2-SAT

