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HARDNESS OF SAT

• SAT can be solved in time 2n poly(n)

• We don’t know how to solve SAT exponentially
faster: in time 1.999n

• Strong Exponential Time Hypothesis (SETH)

SAT requires time 2n
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OTHER PROBLEMS

Longest Com-
mon Subse-
quence

Hamming Clos-
est Pair

Regular Expres-
sion Matching

Orthogonal
Vectors

All Pairs Max
Flow

Graph Diameter

Edit Distance

RNA-Folding

Subset Sum



CONJECTURED HARDNESS

• A conjecture for each problem?

• One conjecture to rule them all?

• Fine-grained Complexity: Better-than-known
algorithms for one problem would imply
better-than-known algorithms for other
problems
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ORTHOGONAL VECTORS PROBLEM

• S, T are sets of N vectors from {0, 1}d. Are there
s ∈ S and t ∈ T such that s · t =

∑d
i=1 si · ti = 0?

• Think of d = log2 N

• Can solve in time d · N2

• SETH implies that OV cannot be solved in
time N1.99
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SETH =⇒ OV

• Given a SAT formula ϕ, split its n input
variables into two sets of size n/2

• For each assignment to the first group — a
vector in S, for each assignment to the
second — a vector in T

• N = 2n/2
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• For an assignment x ∈ {0, 1}n/2, add s ∈ {0, 1}m
to S :

si = 1 iff x doesn’t satisfy clause Ci

• ϕ is SAT iff ∃s ∈ S, t ∈ T :

∀i ∈ {1, . . . ,m} : si · ti = 0

• An N1.99 algorithm for OV gives an algorithm
for SAT with run time

N1.99 = (2n/2)1.99 = 20.995n
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find an S ⊆ V, |S| = k such that

∀v ∈ V : v ∈ S or ∃u ∈ S : (v,u) ∈ E

• For k ≥ 7, solvable in nk

• SETH implies that k-DS cannot be solved in
time nk−0.01 for any k
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SETH =⇒ DS

• For every k, we reduce SAT on n vertices k-DS
with

≈ 2n/k

vertices

• If k-DS on N vertices can be solved in time
Nk−0.1, then SAT can be solved in time

Nk−0.1 = 2(n/k)(k−0.1) = 2n−0.1n/k
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