GEMS OF TCS

FINE-GRAINED COMPLEXITY

Sasha Golovnev September 14, 2022

FINE-GRAINED COMPLEXITY

• Efficient algorithms for important problems?

FINE-GRAINED COMPLEXITY

• Efficient algorithms for important problems?

• For many of them, we couldn't find better algorithms in decades

FINE-GRAINED COMPLEXITY

• Efficient algorithms for important problems?

• For many of them, we couldn't find better algorithms in decades

• Today: Identify reason why we're stuck

Algorithmic Complexity of SAT



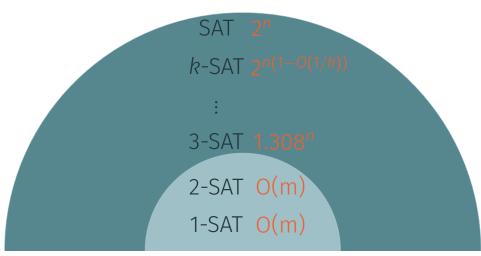
Algorithmic Complexity of SAT

3-SAT **1.308**^{*n*} 2-SAT O(m) 1-SAT O(m)

ALGORITHMIC COMPLEXITY OF SAT

k-SAT $2^{n(1-O(1/k))}$: 3-SAT 1.308ⁿ 2-SAT O(m) 1-SAT O(m)

ALGORITHMIC COMPLEXITY OF SAT



HARDNESS OF SAT

- SAT can be solved in time 2ⁿ poly(n)
- We don't know how to solve SAT exponentially faster: in time 1.999ⁿ

HARDNESS OF SAT

- SAT can be solved in time 2ⁿ poly(n)
- We don't know how to solve SAT exponentially faster: in time 1.999ⁿ
- Strong Exponential Time Hypothesis (SETH)

SAT requires time 2^n

Edit Distance

Edit Distance

elephant relevant

Edit Distance

elephant ★elevant

Edit Distance

ATAGTACT CATACACT

Edit Distance

ATAGTACT CATACACT

 $\widetilde{O}(n^2)$

OTHER PROBLEMS

Longest Common Subsequence Hamming Clos

Edit Distance

Hamming Clos- All Pairs Max RNA-Folding est Pair Flow

Regular Expression Matching Graph Diameter Subset Sum

CONJECTURED HARDNESS

• A conjecture for each problem?

CONJECTURED HARDNESS

- A conjecture for each problem?
- One conjecture to rule them all?

CONJECTURED HARDNESS

- A conjecture for each problem?
- One conjecture to rule them all?
- Fine-grained Complexity: Better-than-known algorithms for one problem would imply better-than-known algorithms for other problems

Orthogonal Vectors (OV)

• *S*, *T* are sets of *N* vectors from $\{0, 1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?

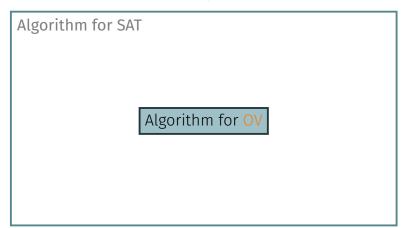
- *S*, *T* are sets of *N* vectors from $\{0, 1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?
- Think of $d = \log^2 N$

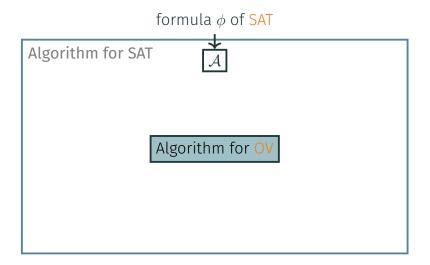
- *S*, *T* are sets of *N* vectors from $\{0, 1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?
- Think of $d = \log^2 N$
- Can solve in time $d \cdot N^2$

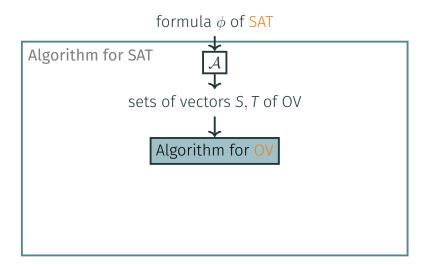
- *S*, *T* are sets of *N* vectors from $\{0, 1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?
- Think of $d = \log^2 N$
- Can solve in time $d \cdot N^2$
- SETH implies that OV cannot be solved in time N^{1.99}

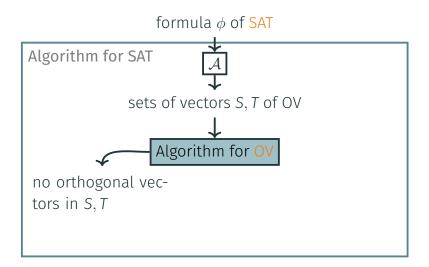
formula ϕ of SAT

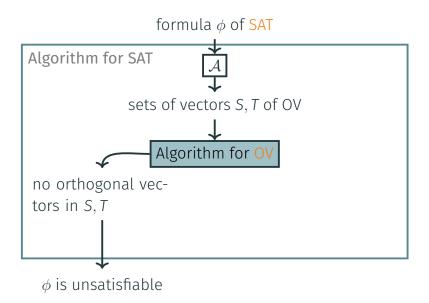
formula ϕ of SAT

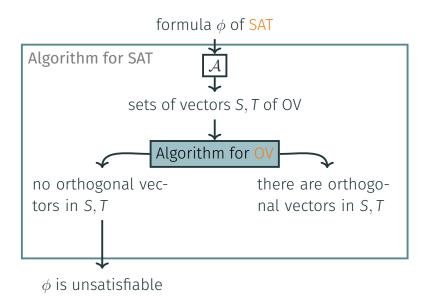


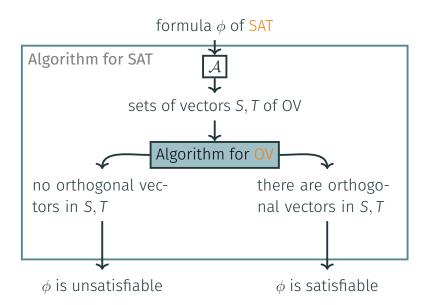












 Given a SAT formula φ, split its n input variables into two sets of size n/2

- Given a SAT formula φ, split its n input variables into two sets of size n/2
- For each assignment to the first group a vector in S, for each assignment to the second a vector in T

- Given a SAT formula φ, split its n input variables into two sets of size n/2
- For each assignment to the first group a vector in S, for each assignment to the second a vector in T
- $N = 2^{n/2}$

• For an assignment $x \in \{0, 1\}^{n/2}$, add $s \in \{0, 1\}^m$ to S:

 $s_i = 1$ iff x doesn't satisfy clause C_i

• For an assignment $x \in \{0, 1\}^{n/2}$, add $s \in \{0, 1\}^m$ to S:

 $s_i = 1$ iff x doesn't satisfy clause C_i

• ϕ is SAT iff $\exists s \in S, t \in T$:

$$\forall i \in \{1,\ldots,m\}: s_i \cdot t_i = 0$$

• For an assignment $x \in \{0, 1\}^{n/2}$, add $s \in \{0, 1\}^m$ to S:

 $s_i = 1$ iff x doesn't satisfy clause C_i

• ϕ is SAT iff $\exists s \in S, t \in T$:

$$\forall i \in \{1,\ldots,m\}: s_i \cdot t_i = 0$$

• An $N^{1.99}$ algorithm for OV gives an algorithm for SAT with run time

• For an assignment $x \in \{0, 1\}^{n/2}$, add $s \in \{0, 1\}^m$ to S:

 $s_i = 1$ iff x doesn't satisfy clause C_i

• ϕ is SAT iff $\exists s \in S, t \in T$:

$$\forall i \in \{1,\ldots,m\}: s_i \cdot t_i = 0$$

• An N^{1.99} algorithm for OV gives an algorithm for SAT with run time

$$N^{1.99} = (2^{n/2})^{1.99} = 2^{0.995n}$$

The Dominating Set Problem

DOMINATING SET

• *k*-Dominating Set: Given G = (V, E), |V| = n, find an $S \subseteq V, |S| = k$ such that

$$\forall v \in V: v \in S \text{ or } \exists u \in S: (v, u) \in E$$

DOMINATING SET

• *k*-Dominating Set: Given G = (V, E), |V| = n, find an $S \subseteq V, |S| = k$ such that

$$\forall v \in V : v \in S \text{ or } \exists u \in S : (v, u) \in E$$

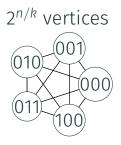
• For $k \ge 7$, solvable in n^k

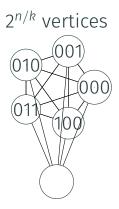
DOMINATING SET

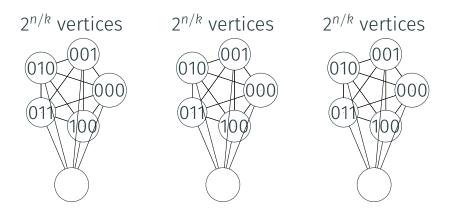
• *k*-Dominating Set: Given G = (V, E), |V| = n, find an $S \subseteq V, |S| = k$ such that

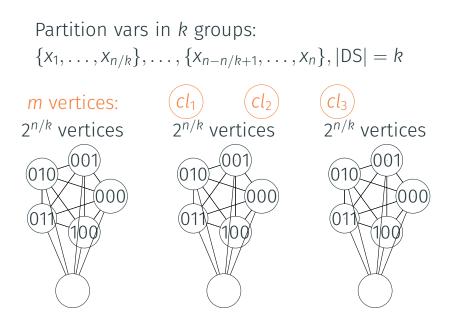
$$\forall v \in V: v \in S \text{ or } \exists u \in S: (v, u) \in E$$

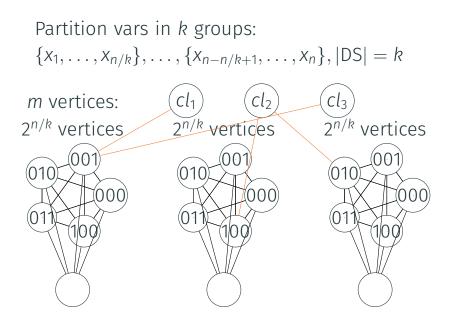
- For $k \ge 7$, solvable in n^k
- SETH implies that k-DS cannot be solved in time n^{k-0.01} for any k











For every k, we reduce SAT on n vertices k-DS with

 $\approx 2^{n/k}$

vertices

For every k, we reduce SAT on n vertices k-DS with

 $\approx 2^{n/k}$

vertices

• If *k*-DS on *N* vertices can be solved in time $N^{k-0.1}$, then SAT can be solved in time

$$N^{k-0.1} = 2^{(n/k)(k-0.1)} = 2^{n-0.1n/k}$$