GEMS OF TCS

GRAPH COLORING ALGORITHMS

Sasha Golovnev September 19, 2022

PREVIOUSLY...

Exact Algorithms

Randomized Algorithms

Approximate Algorithms

PREVIOUSLY...

Exact Algorithms

Randomized Algorithms

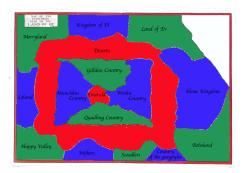
Approximate Algorithms

Today: More examples

Map Coloring

SOUTH AMERICA

THE LAND OF OZ



SWISS CANTONS

Theorem [Appel, Haken, 1976]

Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

· Proved using a computer.

Theorem [Appel, Haken, 1976]

- Proved using a computer.
- · Computer checked almost 2000 graphs.

Theorem [Appel, Haken, 1976]

- Proved using a computer.
- · Computer checked almost 2000 graphs.
- Robertson, Sanders, Seymour, and Thomas gave a much simpler proof in 1997 (still using a computer search).

Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

- · Proved using a computer.
- · Computer checked almost 2000 graphs.
- Robertson, Sanders, Seymour, and Thomas gave a much simpler proof in 1997 (still using a computer search).

Theorem [Weak Version]

Theorem [Weak Version]

Every map can be colored with 6 colors.

• Induction on the number of countries *n*.

Theorem [Weak Version]

- Induction on the number of countries n.
- Base case. $n \le 6$: can color with 6 colors.

Theorem [Weak Version]

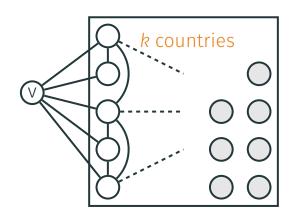
- Induction on the number of countries *n*.
- Base case. $n \le 6$: can color with 6 colors.
- Induction assumption. All maps with k countries can be colored with 6 colors.

Theorem [Weak Version]

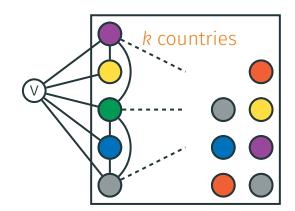
- Induction on the number of countries n.
- Base case. $n \le 6$: can color with 6 colors.
- Induction assumption. All maps with k countries can be colored with 6 colors.
- Induction step. We'll show that any map with k + 1 countries can be colored with 6 colors.

Lemma

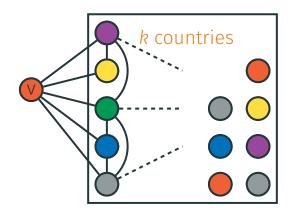
Lemma



Lemma



Lemma



Graph Coloring

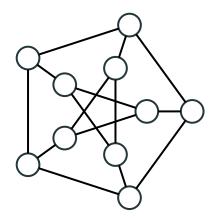
GRAPH COLORING

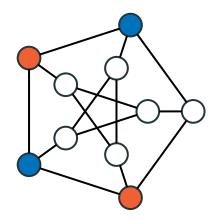
 A graph coloring is a coloring of the graph vertices s.t. no pair of adjacent vertices share the same color

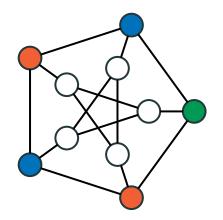
GRAPH COLORING

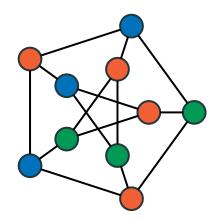
 A graph coloring is a coloring of the graph vertices s.t. no pair of adjacent vertices share the same color.

• The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the graph.

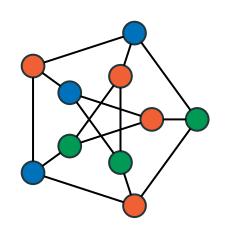






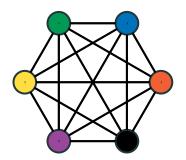


Chromatic number is 3



COMPLETE GRAPHS

The chromatic number of K_n is n.

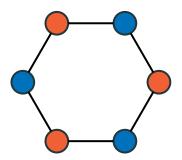


PATH GRAPHS

For n > 1, the chromatic number of P_n is 2.

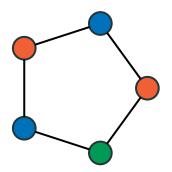
CYCLE GRAPHS

For even n, the chromatic number of C_n is 2.



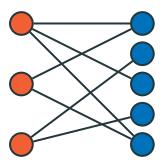
CYCLE GRAPHS

For odd n > 2, the chromatic number of C_n is 3.



BIPARTITE GRAPHS

The chromatic number of a bipartite graph (with at least 1 edge) is 2.



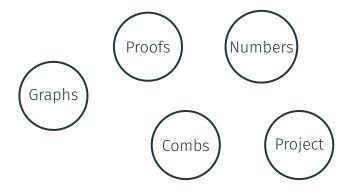
Applications

EXAM SCHEDULE

- · Each student takes an exam in each of her courses
- · All students in one course take the exam together
- · One student cannot take two exams per day
- What is the minimum number of days needed for the exams?

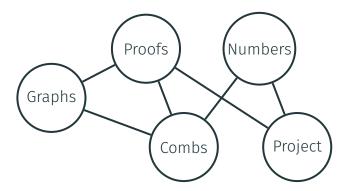
EXAM SCHEDULE

- Each student takes an exam in each of her courses
- · All students in one course take the exam together
- · One student cannot take two exams per day
- What is the minimum number of days needed for the exams?



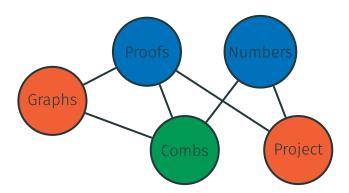
EXAM SCHEDULE

- Each student takes an exam in each of her courses
- · All students in one course take the exam together
- · One student cannot take two exams per day
- What is the minimum number of days needed for the exams?



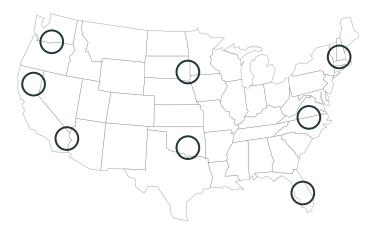
EXAM SCHEDULE

- Each student takes an exam in each of her courses
- · All students in one course take the exam together
- · One student cannot take two exams per day
- What is the minimum number of days needed for the exams?



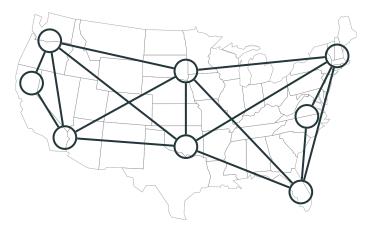
BANDWIDTH ALLOCATION

Different stations are allowed to use the same frequency if they are far apart. What is an optimal assignment of frequencies to stations?



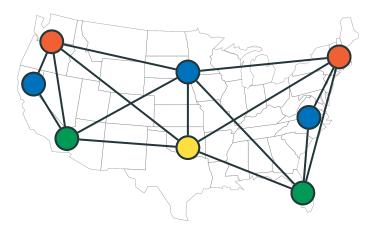
BANDWIDTH ALLOCATION

Different stations are allowed to use the same frequency if they are far apart. What is an optimal assignment of frequencies to stations?



BANDWIDTH ALLOCATION

Different stations are allowed to use the same frequency if they are far apart. What is an optimal assignment of frequencies to stations?



OTHER APPLICATIONS

- Scheduling Problems
- Register Allocation
- Sudoku puzzles
- Taxis scheduling
- ...

Exact Algorithm for Coloring

DYNAMIC PROGRAMMING

Given graph G on n vertices, find
 χ(G)—minimum number of colors in a valid
 coloring of G

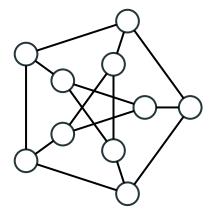
DYNAMIC PROGRAMMING

- Given graph G on n vertices, find
 χ(G)—minimum number of colors in a valid
 coloring of G
- Dynamic programming is one of the most powerful algorithmic techniques

DYNAMIC PROGRAMMING

- Given graph G on n vertices, find
 χ(G)—minimum number of colors in a valid
 coloring of G
- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems

• For a subset of vertices $S \subseteq \{1, ..., n\}$ compute $\chi(S)$ —the minimum number of colors needed to color vertices S



- For a subset of vertices $S \subseteq \{1, ..., n\}$ compute $\chi(S)$ —the minimum number of colors needed to color vertices S
- Consider S. For any subset $U \subseteq S$, if there are no edges between vertices from U, we can color them all in one color, and use $\chi(S \setminus U)$ to color the rest

- For a subset of vertices $S \subseteq \{1, ..., n\}$ compute $\chi(S)$ —the minimum number of colors needed to color vertices S
- Consider S. For any subset $U \subseteq S$, if there are no edges between vertices from U, we can color them all in one color, and use $\chi(S \setminus U)$ to color the rest

$$\chi(S) = \min_{U \text{ without edges}} 1 + \chi(S \setminus U)$$

ORDER OF SUBPROBLEMS

• Need to process all subsets $S \subseteq \{1, ..., n\}$ in order that guarantees that when computing the value of $\chi(S)$, the values of $\chi(S \setminus U)$ have already been computed

ORDER OF SUBPROBLEMS

- Need to process all subsets $S \subseteq \{1, ..., n\}$ in order that guarantees that when computing the value of $\chi(S)$, the values of $\chi(S \setminus U)$ have already been computed
- For example, we can process subsets in order of increasing size

$$\chi(\emptyset) = 0$$

$$\chi(\emptyset) = 0$$

for s from 1 to n:

for all $S \subseteq \{1, ..., n\}$ of size s:

$$\chi(\emptyset) = 0$$
 for s from 1 to n : for all $S \subseteq \{1, \dots, n\}$ of size s : for all $U \subseteq S$, U without edges
$$\chi(S) \leftarrow \min\{\chi(S), \chi(S \setminus U) + 1\}$$

$$\chi(\emptyset) = 0$$
 for s from 1 to n : for all $S \subseteq \{1, \ldots, n\}$ of size s: for all $U \subseteq S$, U without edges
$$\chi(S) \leftarrow \min\{\chi(S), \chi(S \setminus U) + 1\}$$
 return $\chi(\{1, \ldots, n\})$

RUNNING TIME

```
\chi(\emptyset) = 0 FOR S FROM 1 TO n:  \text{FOR ALL } S \subseteq \{1, \dots, n\} \text{ of Size S:}   \text{FOR ALL } U \subseteq S, \ U \text{ without edges}   \chi(S) \leftarrow \min\{\chi(S), \chi(S \setminus U) + 1\}  RETURN \chi(\{1, \dots, n\})
```

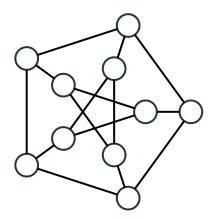
Randomized Algorithm for 3-Coloring

· Given a 3-colorable graph, find a 3-coloring

· Given a 3-colorable graph, find a 3-coloring

 This problem is NP-hard, we'll give an exponential-time algorithm

Forbid one random color at each vertex



Forbid one random color at each vertex

Solve 2-SAT in polynomial time

Forbid one random color at each vertex

Solve 2-SAT in polynomial time

• Repeat the algorithm $(3/2)^n$ times

Approximate Algorithm for

3-Coloring

APPROXIMATE COLORING

Given a 3-colorable graph, finding a 3-coloring is NP-hard

APPROXIMATE COLORING

Given a 3-colorable graph, finding a 3-coloring is NP-hard

 Given a 3-colorable graph, finding an n-coloring is trivial

APPROXIMATE COLORING

- Given a 3-colorable graph, finding a 3-coloring is NP-hard
- Given a 3-colorable graph, finding an n-coloring is trivial
- We'll see how to find an $O(\sqrt{n})$ -coloring in polynomial time

GRAPHS OF BOUNDED DEGREE

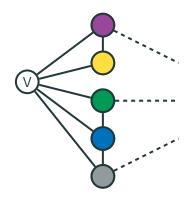
Greedy Coloring

A graph G where each vertex has degree $\leq \Delta$ can be colored with $\Delta + 1$ colors.

GRAPHS OF BOUNDED DEGREE

Greedy Coloring

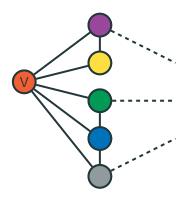
A graph G where each vertex has degree $\leq \Delta$ can be colored with $\Delta + 1$ colors.



GRAPHS OF BOUNDED DEGREE

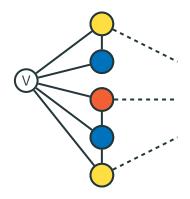
Greedy Coloring

A graph G where each vertex has degree $\leq \Delta$ can be colored with $\Delta + 1$ colors.

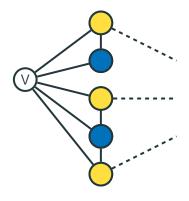


While there is vertex $v \in G$ of degree $\geq \sqrt{n}$:

While there is vertex $v \in G$ of degree $\geq \sqrt{n}$:



While there is vertex $v \in G$ of degree $\geq \sqrt{n}$:



While there is vertex $v \in G$ of degree $\geq \sqrt{n}$: Color the neighbors of v in 2 new colors, remove them from the graph

While there is vertex $v \in G$ of degree $\geq \sqrt{n}$: Color the neighbors of v in 2 new colors, remove them from the graph All remaining vertices have degree $< \sqrt{n}$. Color the rest of the graph using \sqrt{n} new colors

ANALYSIS