GEMS OF TCS

HEURISTIC ALGORITHMS

Sasha Golovnev Semptermber 21, 2022

• When exact algorithms are too slow, and approximate algorithm are not accurate enough

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms
- Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient

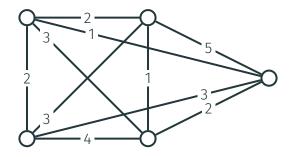
- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms
- Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient
- Some heuristic algorithms are fast but not guaranteed to find optimal solutions

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms
- Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient
- Some heuristic algorithms are fast but not guaranteed to find optimal solutions
- Some heuristic algorithms find optimal solutions but not guaranteed to be fast

Traveling Salesman

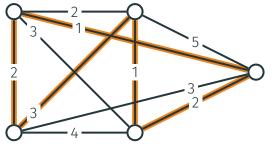
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once



TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once



length: 9

NEAREST NEIGHBORS

• Going to the nearest unvisited node at every iteration?

NEAREST NEIGHBORS

- Going to the nearest unvisited node at every iteration?
- Efficient, works reasonably well in practice

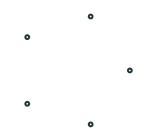
NEAREST NEIGHBORS

- Going to the nearest unvisited node at every iteration?
- Efficient, works reasonably well in practice
- May produce a cycle that is much worse than an optimal one

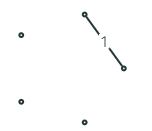
• How to fool the nearest neighbors heuristic?

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:



- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

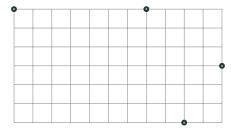


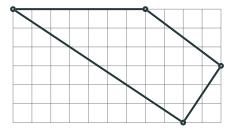
- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

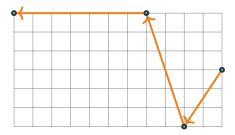
- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

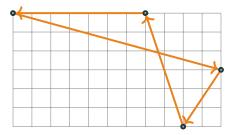
- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

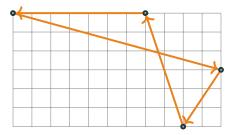
- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:



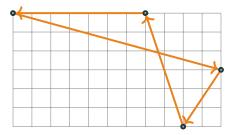








 $OPT \approx 26.42$ $NN \approx 28.33$



 $OPT \approx 26.42$ $NN \approx 28.33$

For Euclidean instances, the resulting cycle is $O(\log n)$ -approximate

 \cdot s \leftarrow some initial solution

- \cdot s \leftarrow some initial solution
- while it is possible to change 2 edges in s to get a better cycle s':

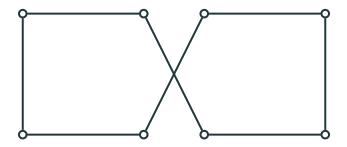
- \cdot s \leftarrow some initial solution
- while it is possible to change 2 edges in s to get a better cycle s':

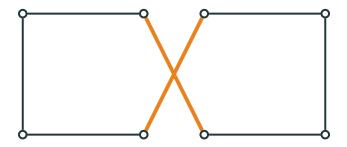
$$\cdot$$
 s \leftarrow s'

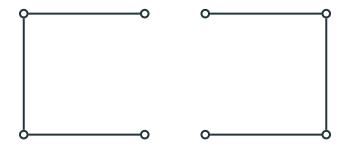
- $\cdot \ \mathsf{s} \gets \mathsf{some \ initial \ solution}$
- while it is possible to change 2 edges in s to get a better cycle s':

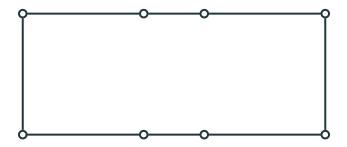
$$\cdot \ \mathsf{S} \leftarrow \mathsf{S}'$$

• return s

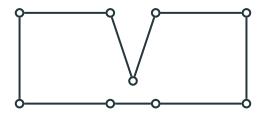




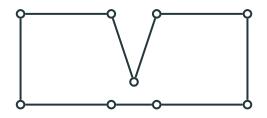




A suboptimal solution that cannot be improved by changing two edges:



A suboptimal solution that cannot be improved by changing two edges:



Need to allow changing three edges to improve this solution

LOCAL SEARCH

Local Search with parameter *d* :

- \cdot s \leftarrow some initial solution
- while it is possible to change d edges in s to get a better cycle s':

•
$$S \leftarrow S'$$

• return s

PROPERTIES

• Computes a local optimum instead of a global optimum

PROPERTIES

- Computes a local optimum instead of a global optimum
- The larger *d*, the better the resulting solution and the higher is the running time

Performance

• Trade-off between quality and running time of a single iteration

PERFORMANCE

- Trade-off between quality and running time of a single iteration
- Still, the number of iterations may be exponential and the quality of the found cycle may be poor

PERFORMANCE

- Trade-off between quality and running time of a single iteration
- Still, the number of iterations may be exponential and the quality of the found cycle may be poor
- But works well in practice

Satisfiability

SAT

$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)$

SAT

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)$$

 $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$

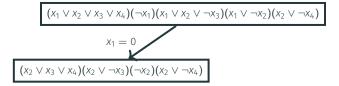
BACKTRACKING

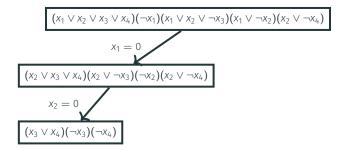
• Construct a solution piece by piece

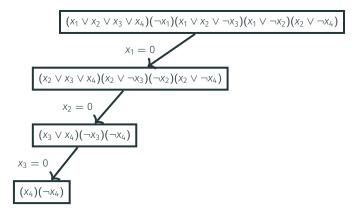
BACKTRACKING

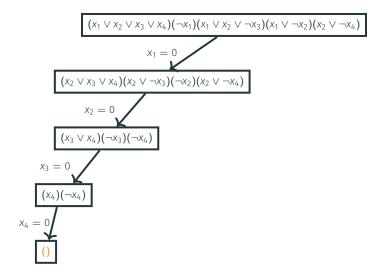
- Construct a solution piece by piece
- Backtrack if the current partial solution cannot be extended to a valid solution

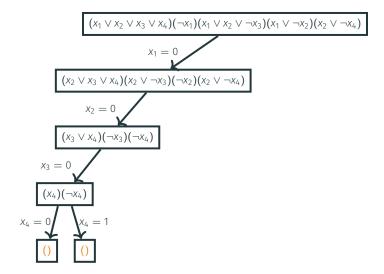
 $(x_1 \lor x_2 \lor x_3 \lor x_4)(\neg x_1)(x_1 \lor x_2 \lor \neg x_3)(x_1 \lor \neg x_2)(x_2 \lor \neg x_4)$

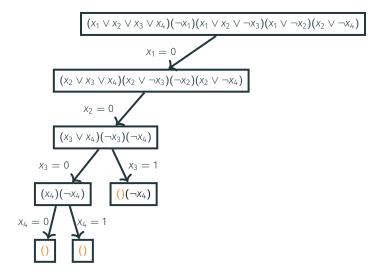


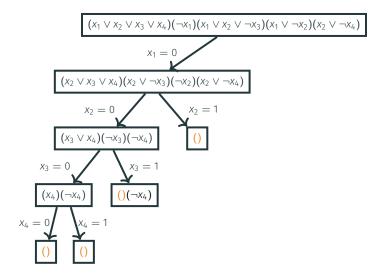


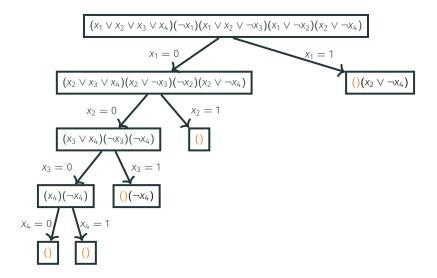












- SolveSAT(*F*):
 - if *F* has no clauses:
 - return "sat"
 - if F contains an empty clause: return "unsat"

- SolveSAT(*F*):
 - if *F* has no clauses:
 - return "sat"
 - if F contains an empty clause: return "unsat"
 - $\cdot x \leftarrow unassigned variable of F$

- SolveSAT(*F*):
 - if F has no clauses:
 - return "sat"
 - if F contains an empty clause: return "unsat"
 - $x \leftarrow$ unassigned variable of F
 - if SolveSAT(F[x ← 0]) = "sat": return "sat"

- SolveSAT(*F*):
 - if F has no clauses:
 - return "sat"
 - if F contains an empty clause: return "unsat"
 - $x \leftarrow$ unassigned variable of F
 - if SolveSAT(F[x ← 0]) = "sat": return "sat"
 - if SolveSAT(F[x ← 1]) = "sat": return "sat"

- SolveSAT(*F*):
 - if *F* has no clauses:
 - return "sat"
 - if F contains an empty clause: return "unsat"
 - $x \leftarrow$ unassigned variable of F
 - if SolveSAT(F[x ← 0]) = "sat": return "sat"
 - if SolveSAT(F[x ← 1]) = "sat": return "sat"
 - return "unsat"

BACKTRACKING

• Thus, instead of considering all 2ⁿ branches of the recursion tree, we track carefully each branch

BACKTRACKING

- Thus, instead of considering all 2ⁿ branches of the recursion tree, we track carefully each branch
- When we realize that a branch is dead (cannot be extended to a solution), we immediately cut it

SAT SOLVERS

• Backtracking is used in many state-of-the-art SAT-solvers

SAT SOLVERS

- Backtracking is used in many state-of-the-art SAT-solvers
- SAT-solvers use tricky heuristics to choose a variable to branch on, simplify a formula before branching, and use efficient data structures

SAT SOLVERS

- Backtracking is used in many state-of-the-art SAT-solvers
- SAT-solvers use tricky heuristics to choose a variable to branch on, simplify a formula before branching, and use efficient data structures
- Another commonly used technique is local search

Applications

THE ART OF COMPUTER PROGRAMMING

THE ART OF COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 6A

A DRAFT OF SECTION 7.2.2.2: SATISFIABILITY

DONALD E. KNUTH Stanford University

THE ART OF COMPUTER PROGRAMMING

Wow! — Section 7.2.2.2 has turned out to be the longest section, by far, in <u>The Art of Computer</u> <u>Programming</u>. The SAT problem is evidently a "killer app," because it is key to the solution of so many problems. Consequently I can only hope that my lengthy treatment does not also kill off my faithful readers!

Donald Knuth

SAT HANDBOOK

CONFERENCE, COMPETITION, JOURNAL

Annual SAT Conference (since 1996):
 http://satisfiability.org

CONFERENCE, COMPETITION, JOURNAL

- Annual SAT Conference (since 1996):
 http://satisfiability.org
- Annual SAT Solving competitions (since 2002):
 - http://www.satcompetition.org/

CONFERENCE, COMPETITION, JOURNAL

- Annual SAT Conference (since 1996):
 http://satisfiability.org
- Annual SAT Solving competitions (since 2002):
 - http://www.satcompetition.org/
- Journal on Satisfiability, Boolean Modeling and Computation:

http://jsatjournal.org/

MATH PROOFS

NATURE | NEWS

< 🖶

Two-hundred-terabyte maths proof is largest ever A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016

MATH PROOFS

GEOMETRY

Computer Search Settles 90-Year-Old Math Problem

By translating Keller's conjecture into a computerfriendly search for a type of graph, researchers have finally resolved a problem about covering spaces with tiles.

SAT SOLVERS

```
from pycosat import solve
clauses = [ [-1, -2, -3], [1, -2], [2, -3], [3,
-1], [1, 2, 3] ]
print(solve(clauses))
print(solve(clauses[1:]))
```

SAT SOLVERS

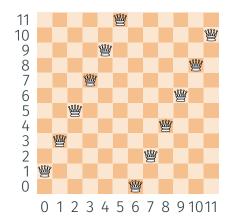
```
from pycosat import solve
clauses = [ [-1, -2, -3], [1, -2], [2, -3], [3,
-1], [1, 2, 3] ]
print(solve(clauses))
print(solve(clauses[1:]))
```

UNSAT [1, 2, 3]

N QUEENS

Is it possible to place n queens on an $n \times n$ board such that no two of them attack each other?

EXAMPLES



EXAMPLES

• $n^2 0/1$ -variables: for $0 \le i, j < n, x_{ij} = 1$ iff queen is placed into cell (i, j)

- $n^2 0/1$ -variables: for $0 \le i, j < n, x_{ij} = 1$ iff queen is placed into cell (i, j)
- For $0 \le i < n$, *i*th row contains ≥ 1 queen:

$$(x_{i0} = 1 \text{ or } x_{i2} = 1 \text{ or } \dots \text{ or } x_{i(n-1)} = 1).$$

- $n^2 0/1$ -variables: for $0 \le i, j < n, x_{ij} = 1$ iff queen is placed into cell (i, j)
- For $0 \le i < n$, *i*th row contains ≥ 1 queen: ($x_{i0} = 1$ or $x_{i2} = 1$ or ... or $x_{i(n-1)} = 1$).
- For $0 \le i < n$, *i*th row contains ≤ 1 queen: $\forall 0 \le j_1 \ne j_2 < n$: $(x_{ij_1} = 0 \text{ or } x_{ij_2} = 0)$.

- $n^2 0/1$ -variables: for $0 \le i, j < n, x_{ij} = 1$ iff queen is placed into cell (i, j)
- For $0 \le i < n$, *i*th row contains ≥ 1 queen: ($x_{i0} = 1$ or $x_{i2} = 1$ or ... or $x_{i(n-1)} = 1$).
- For $0 \le i < n$, *i*th row contains ≤ 1 queen: $\forall 0 \le j_1 \ne j_2 < n$: $(x_{ij_1} = 0 \text{ or } x_{ij_2} = 0)$.
- For $0 \le j < n$, *j*th column contains ≤ 1 queen: $\forall 0 \le i_1 \ne i_2 < n$: $(x_{i_1j} = 0 \text{ or } x_{i_2j} = 0)$.

- $n^2 0/1$ -variables: for $0 \le i, j < n, x_{ij} = 1$ iff queen is placed into cell (i, j)
- For $0 \le i < n$, *i*th row contains ≥ 1 queen: ($x_{i0} = 1$ or $x_{i2} = 1$ or ... or $x_{i(n-1)} = 1$).
- For $0 \le i < n$, *i*th row contains ≤ 1 queen: $\forall 0 \le j_1 \ne j_2 < n$: $(x_{ij_1} = 0 \text{ or } x_{ij_2} = 0)$.
- For $0 \le j < n$, *j*th column contains ≤ 1 queen: $\forall 0 \le i_1 \ne i_2 < n$: $(x_{i_1j} = 0 \text{ or } x_{i_2j} = 0)$.
- For each pair $(i_1, j_1), (i_2, j_2)$ on diagonal:

$$(x_{i_1j_1} = 0 \text{ or } x_{i_2j_2} = 0).$$

IMPLEMENTATION

```
from itertools import combinations, product
from pycosat import solve
n = 10
clauses = []
# converts a pair of integers into a unique integer
def varnum(i, j):
    assert i in range(n) and j in range(n)
    return i * n + j + 1
# each row contains at least one queen
for i in range(n):
    clauses.append([varnum(i, j) for j in range(n)])
# each row contains at most one queen
for i in range(n):
    for j1, j2 in combinations(range(n), 2):
        clauses.append([-varnum(i, j1), -varnum(i, j2)])
# each column contains at most one queen
for j in range(n):
    for i1. i2 in combinations(range(n), 2):
        clauses.append([-varnum(i1, j), -varnum(i2, j)])
# no two queens stay on the same diagonal
for i1, i1, i2, i2 in product(range(n), repeat=4);
    if i1 == i2:
        continue
    if abs(i1 - i2) == abs(i1 - i2):
        clauses.append([-varnum(i1, j1),
                        -varnum(i2, i2)])
assignment = solve(clauses)
for i, j in product(range(n), repeat=2):
    if assignment[varnum(i, j) - 17 > 0:
```

print(j, end=' ')