
These lecture notes are based on a manuscript of a book on matrix rigidity by Chi-Ning Chou and
Sasha Golovnev.

Chapter 1

Introduction

Lecture 11.1 Definitions and examples
One of the main questions in computational complexity is that of proving lower bounds on the size of
Boolean circuits computing explicitly given functions. While most Boolean functions of n inputs require
circuits of size 2n/n [Sha49a, Lup59a], we can only prove small linear lower bounds for explicitly defined
functions [LR01, IM02, Blu83, DK11, FGHK16]. 1

The same question remains open for linear circuits computing linear Boolean functions. Since any linear
function with one output can be computed by a circuit of size at most n, we study linear functions with n
inputs and n outputs. A random linear map with n outputs requires circuits of size n2/ log n [Lup56], but
the best known lower bound for an explicit linear map is only 3n− o(n) [Cha94a].

The notion of matrix rigidity was introduced by Valiant [Val77] as a tool for proving lower bounds against
linear circuits. (A related notion of separability was introduced by Grigoriev [Gri76].)

We will use the following notation. A matrix A is called s-sparse, if the number of non-zero entries in A
is at most s. We will use In, 0n and Jn to denote the identity matrix, zero matrix, and all-ones matrix of
size n× n. For a matrix A ∈ Fn×n, by ‖A‖0 we denote the number of non-zero entries in A.
Definition 1.1 (Rigidity). Let F be a field, A ∈ Fn×n be a matrix, and 0 ≤ r ≤ n. The rigidity of A over F,
denoted by RF

A(r), is the Hamming distance between A and the set of matrices of rank at most r. Formally,

RF
A(r) := min

rank(A+C)≤r
‖C‖0 .

In other words, a matrix A has rigidity RF
A(r) ≥ s if and only if A ∈ Fn×n cannot be written as a sum

A = S + L ,

where S ∈ Fn×n is (s− 1)-sparse matrix, and L ∈ Fn×n is low-rank: rank(L) ≤ r.
Valiant [Val77] proved that any linear map A ∈ Fn×n computed by a linear circuit (over a field F) of depth

O(log n) and size o(n log log n) has rigidity at most RF
A(εn) ≤ n1+δ for every constant ε, δ > 0. Therefore,

an explicit matrix of higher rigidity would give us a super-linear lower bound against linear circuits of
logarithmic depth. Despite more than 40 years of research, the problem of proving super-linear lower bounds
for such circuits remains open.

Let us now see the rigidity of a few specific matrices.

• If A ∈ Fn×n has rank rank(A) = k over the field F, then RF
A(r) = 0 for every r ≥ k. Indeed, A can

be written as a sum of A and 0n, where rank(A) ≤ r and 0n is 0-sparse. Similarly, an s-sparse matrix
A ∈ Fn×n has rigidity RF

A(r) ≤ s for any value of r.
1Here by explicit functions we mean functions computable in time polynomial in n. We will later discuss the notion of

explicitness in greater detail.
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• For any 0 ≤ r ≤ n, RF
In

(r) = n− r. Indeed, if we change n− r ones of In to zeros, then the resulting
matrix has rank r, which implies that RF

In
(r) ≤ n−r. On the other hand, for any (n−r)-sparse matrix

B, from subadditivity of rank,

rank(In +B) ≥ rank(In)− rank(B) ≥ n− (n− r) = r ,

which gives us that RF
In

(r) ≥ n− r.

• Let n be a multiple of 2r, and let Mn ∈ Fn×n be a matrix consisting of matrices I2r stacked together
side by side:

Mn =

I2r · · · I2r
...

. . .
...

I2r · · · I2r

 .

We will show that this matrix has rigidity RF
A(r) = n2

4r .

Theorem 1.2 ([Mid05]). For any field F, and any n divisible by 1 ≤ 2r ≤ n,

RF
Mn

(r) =
n2

4r
.

Proof of Theorem 1.2. Mn consists of n2

4r2 copies of the identity matrix I2r. In order to drop the rank
of A to r, the rank of each copy of I2r must be dropped to r. From the previous example we know that
in order to decrease the rank of I2r to r, one needs to change at least r elements. Thus, n2

4r2 · r = n2

4r

entries of Mn must be changed. Note that this bounds is tight, i.e., RF
Mn

(r) = n2

4r .

The bound of Theorem 1.2 easily generalizes to all values r ≤ n/2 with a loss of a multiplicative factor
of 2. This theorem was proven by Midrijānis [Mid05], and it gives a simple matrix with rigidityRF

Mn
(r) ≥ n2

8r .
We will see later that there exist matrices with much higher rigidity Ω̃

(
(n− r)2

)
. Embarrassingly, the

best known lower bound for an explicit matrix improves on the n2

8r bound only by a logarithmic factor.

1.2 Circuit Complexity
A circuit corresponds to a simple straight line program where every instruction performs a binary operation
on two operands, each of which is either an input or the result of a previous instruction. The structure
of this program is extremely simple: no loops, no conditional statements. Still, we know no functions in
P (or even NP, or even ENP) that requires even 3.1n binary instructions (“size”) to compute on inputs of
length n. This is in sharp contrast with the fact that it is easy to non-constructively find such functions:
simple counting arguments show a random function on n variables has circuit size Ω(2n/n) with probability
1− o(1) [Sha49b, Lup59b].

For small-depth circuits we know several strong lower bounds. (Note that when working with circuits
of constant depth, we do not pose bounds on the fan-ins of the gates.) Depth-2 circuits (after a simple
normalization) are just CNFs or DNFs. It is easy to see that the parity function ⊕n of n inputs requires
CNFs and DNFs of size Ω(2n). For depth-d circuits, we know a lower bound of 2Ω(n(1/(d−1))) [Hås86, HJP93,
PPZ97, Bop97, PPSZ05, MW17]. Thus, for depth d = o(log n/ log log n) we have non-trivial lower bounds
even if the fan-ins of the gates are unbounded. For circuits with fan-in 2, we known functions which cannot
be computed by circuits of depth 1.99 log n [Nec66]. Thus, a problem on the frontier is

Problem 1.3. Prove a lower bound of 10n against circuits of depth 10 log n.
More generally, a lower bound of ω(n) against circuits of depth O(log n).

Super-linear lower bounds are not known even for linear circuits, i.e., circuits consisting of only gates
computing linear combinations of their two inputs. Note that every linear function with one output has a
circuit of size n− 1 (and depth log n). For linear circuits, we consider linear transformations, multi-output
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functions of the form f(x) = Ax where A ∈ Fn×n. For a random matrix A ∈ {0, 1}n×n, the size of the
smallest linear circuit computing Ax is Θ(n2/ log n) [Lup56] with probability 1 − o(1), but for explicitly-
constructed matrices the strongest known lower bound is 3n − o(n) [Cha94b]. This leads us to another
problem on the frontier:

Problem 1.4. Prove a lower bound of ω(n) against linear circuits of depth O(log n).

Formally, Problem 1.3 and Problem 1.4 are incomparable, as in the linear case we study a weaker
computational model (which makes it easier to prove lower bounds), but are limited to proving lower bounds
for a smaller class of problem (which makes it harder to prove lower bounds).

1.3 Circuits and Rigidity
In this section, we will present a seminal result of Valiant [Val77] showing that rigid matrices require log-depth
circuits of super-linear size. We start with the definition of linear circuits.
Definition 1.5 (Linear circuits). Let F be a field and n ∈ N. A circuit C with n inputs and n outputs is a
directed acyclic graph where n vertices have fan-in zero and are labeled by the inputs, all other vertices have
fan-in two and are labeled with affine functions (over F) of their two inputs, n of these vertices are labeled as
outputs. For every fixed input, the value at each node is computed by applying the corresponding functions.
Such a circuit C naturally defines a linear map f : Fn → Fn, and the corresponding matrix A ∈ Fn×n such
that f(x) = Ax.

The depth d(C) of a circuit C is the length of the longest path in the circuit. The size s(C) of C is defined
as the number of vertices in C.

The following theorem shows a connection between lower bounds for linear circuits and matrix rigidity.

Theorem 1.6. Let F be a field, and A ∈ Fn×n be a family of matrices for n ∈ N. If RF
A(εn) > n1+δ for

constant ε, δ > 0, then any O(log n)-depth linear circuit computing x→ Ax must be of size Ω(n · log log n).

The proof of Theorem 1.6 repeatedly uses the following beautiful graph theoretic lemma due to Erdös,
Graham, and Szemerédi [EGS76]: If G is a directed acyclic graph with s edges and of depth d, then there is
a set of s/ log d edges whose removal decreases the depth of G by a factor of two. We will follow the proof
of this lemma from [Vio09].

Lemma 1.7 ([EGS76]). Let G be an acyclic digraph with s edges and of depth d = 2k. There exists a set of
s/ log d edges in G such that after their removal, the longest path in G has length at most d/2.

Proof of Lemma 1.7. For ease of exposition, we follow [Vio09] and define a depth function. Let G = (V,E)
be an acyclic digraph. We say that D : V → {0, 1, . . . , d} is a depth function for G if for any (a, b) ∈ E,
D(a) < D(b). It is not difficult to see that G has depth at most d if and only if there exists a depth function
D : V → {0, 1, . . . , d− 1} for G.

We start with G of depth at most d = 2k, and its depth function D : V → {0, 1, . . . , 2k}. Now, consider
the following partition of E using the depth function D. For each i ∈ [k], define

Ei = {(a, b) ∈ E : the most significant bit where D(a), D(b) differ is the ith bit}.

As {Ei}i∈[k] is a partition of E, by the averaging argument, there exists i∗ ∈ [k] such that

|Ei∗ | ≤
|E|
k
≤ |E|

log d
.

Now, it suffices to show that the depth of G′ = (V,E′), where E′ = E\Ei∗ , is at most 2k−1. This can be
shown by exhibiting a depth function D′ : V → {0, 1, . . . , 2k−1− 1} for G′. The following shows that we can
take D′(v) to be D(v) without the i∗th bit.

Consider an edge (a, b) ∈ E′. Since (a, b) ∈ E, D(a) < D(b). In particular, there exists i ∈ [k] such that
the most significant bit where D(a) and D(b) differ is i. Since (a, b) ∈ E′, the edge (a, b) was not removed,
so i 6= i∗. Therefore, after removing the bit i∗, this bit i is still the most significant bit where D′(a) and
D′(b) differ. This implies that D′(a) < D′(b), and that D′ : V → {0, 1, . . . , 2k−1 − 1} is a depth function
for G′.

3



Matrix Rigidity Sasha Golovnev October 7, 2020

x1 x2 . . . xn−1 xn

p1 p2 . . . ps−1 pεn

q1 q2 . . . qn−1 qn

unbounded

nδ nδ

Figure 1.1: In order to compute the values of the outputs of the circuit C, first we precompute the values
of εn removed edges (or vertices V ′), and store them in variables pi. Now each output qj of the circuit C
can be computed from nδ inputs and precomputed bits. In particular, A = BM + C, where C encodes
the dependence of the outputs qi on the inputs xj ; B encodes the dependence of qi on pj ; M encodes the
dependence of pi on xj . Since C is sparse, and BM is low rank, the matrix A is not rigid.

Lecture 2Now we finish the proof of Theorem 1.6.

Proof of Theorem 1.6. We will show that for every constant cd ≥ 2, every circuit of depth at most cd log n
computing x → Ax must be of size at least csn log log n for a constant cs = ε

log cd+log 1/δ . Suppose, to the
contrary, that there is a linear circuit C of size s = csn log log n and depth d = cd log n = 2k that computes
x→ Ax. Let G be the underlying acyclic digraph of C.

First, we apply Lemma 1.7 to G t times, and get a graph G′ such that (i) only

s ·
(

1

log d
+

1

log d− 1
+ · · · 1

log d− (t− 1)

)
≤ st

log d− (t− 1)

edges are removed from G and (ii) the longest path in G′ is of length at most d′ ≤ d/2t.
By setting t = log cd + log 1/δ, the longest path in G′ has length ≤ d/2t = δ log n, and the number of

removed edges is at most
st

log d− (t− 1)
=

st

log d/2
≤ tcsn log log n

log log n
= εn .

Now, let E be the set of removed edges and V ′ be the set of tail vertices of the edges from E. Since all
paths in G′ are no longer than d′ and all in-degrees are at most 2, every output vertex in G′ is now connected
to at most 2d

′
input variables. Therefore, every output is a (linear) function of at most 2d

′
inputs and the

functions computed at the removed edges (or the vertices V ′).
More specifically, let Ai be the ith row of A, i.e., the linear form computed by the ith output vertex of

G. Then Ai can be written as the following sum

Ai =
∑

j∈[|V ′|]

bijvj + ci

where vj is the linear form computed by the jth element in V ′ and ci is the linear form computed by the ith

output vertex in G′. Note that since ci only depends on at most 2d
′
input variables.

Therefore, the matrix A can be written as follows.

A = BM + C

where B ∈ Fn×|V ′| consists of the coefficients bij , rows of M ∈ F|V ′|×n compute linear forms of vertices
from V ′, and C ∈ Fn×n is a row sparse matrix where the number of non-zero entries in each row is at most
2d
′

= nδ.
The above argument gives us that R̃F

A(|V ′|) = R̃F
A(εn) ≤ nδ, which contradicts the assumption on the

rigidity of A.
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1.4 Existence of Rigid Matrices
In this section, we will show that for any field F, most of the n×n matrices have the highest possible rigidity
for any rank parameter r.

It turns out that for every matrix A and field F, there is a simple upper bound RF
A(r) ≤ (n − r)2.

Valiant [Val77] showed that this upper bound is essentially tight for a random matrix. First, we give a proof
of the upper bound.

Theorem 1.8 (Simple upper bound). For any field F, matrix A ∈ Fn×n, and integer 0 ≤ r ≤ n, we have
that

RF
A(r) ≤ (n− r)2 .

Proof of Theorem 1.8. If rank(A) ≤ r, then RF
A(r) = 0 ≤ (n − r)2. Thus, it suffices to focus on the case

where there is an r × r full-rank submatrix B ∈ Fr×r of A. Without loss of generality, assume that B is
located in the top left corner of A:

A =

(
B A12

A21 A22

)
, (1.9)

where A12 ∈ Fr×(n−r), A21 ∈ F(n−r)×r, A22 ∈ F(n−r)×(n−r). In order to prove that RF
A(r) ≤ (n− r)2, we will

show that it is possible to change the entries in A22 ∈ F(n−r)×(n−r) and reduce the rank of A to r. Since
B has full rank, each row in A21 is a unique linear combination of the rows in B. Thus, we can change the
entries in A22 according to these linear combinations so that each row in A is now a linear combination of
the first r rows, i.e., the rank of the modified matrix is at most r. 2

Note that the above algorithm only modifies the entries of A22 ∈ F(n−r)×(n−r). Thus, at most (n − r)2

many entries in A are changed, and RF
A(r) ≤ (n− r)2.

We will now prove that almost all matrices have rigidity (n− r)2.

Theorem 1.10 (Valiant’s lower bounds [Val77]). For any field F,

• if F is infinite, then for all 0 ≤ r ≤ n there exists a matrix M ∈ Fn×n of rigidity

RF
M (r) = (n− r)2 ;

• if F is finite, then for all 0 ≤ r ≤ n− Ω(
√
n) there exists a matrix M ∈ Fn×n of rigidity

RF
M (r) = Ω

(
(n− r)2/ log n

)
.

Proof of Theorem 1.10. Let Mr,s = {A ∈ Fn×n : RF
A(r) ≤ s} be the set of all matrices of r-rigidity at most

s. We will show that the n2 elements of matrices from Mr,s lie in the union of images of a few rational maps
from Fn2+s−(n−r)2 to Fn2

. Intuitively, since for s� (n− r)2 these images cover only a negligible fraction of
all matrices in Fn×n, we will have that “most” of the matrices are rigid.

For every matrix M ∈ Mr,s, there exists an s-sparse matrix S ∈ Fn×n and a low-rank matrix L ∈
Fn×n, rank(L) = k ≤ r such that M = S + L. After one of at most

(
n
k

)2 permutations of rows and columns,
we have the first k rows and columns of L linearly independent. The same permutations of rows and columns
applied to M , give us a matrix of the form (

M11 M12

M21 M22

)
, (1.11)

where M11 ∈ Fk×k,M12 ∈ Fk×(n−k),M21 ∈ F(n−k)×k,M22 ∈ F(n−k)×(n−k). Moreover, for at least one out of(
n2

s

)
choices of s entries of the matrix, we have that a change in those entries makes rank(M11) = rank(M).

Similarly to Theorem 1.8, this implies that all entries of M22 are then rational maps of the entries in
2Formally, we set A22 = A21B−1A12.
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M11,M12,M21. That is, the n2 entries of any matrixM ∈Mr,s lie in the union of at most
(
n
r

)2 ·(n2

s

)
rational

maps from Fs+n2−(n−r)2 to Fn2

.
When F is infinite and s < (n−r)2, every matrix inMr,s is in the union of finitely many images of rational

functions from Fn2−1 to Fn2

. Since n2 rational functions of n2−1 variables are algebraically dependent (see,
e.g., [For92]), a finite union of such images is the set of roots of a non-zero polynomial. This implies that
some matrices from Fn×n do not belong to Mr,s.

When |F| = q <∞ is finite, each M ∈Mr,s is uniquely specified by one out of
(
n
r

)2 permutations, one of(
n2

s

)
choices of s elements, values of those s elements, and values of the entries in M11,M12,M21. Thus, the

size of Mr,s is bounded from above by(
n

r

)2

·
(
n2

s

)
· qs · qn

2−(n−r)2 ≤ 22n+2s logn · qn
2+s−(n−r)2 ,

which is at most o(qn
2

) for every s < (n− r)2/Ω(logq n) and r = n− Ω(
√
n).

Note that the proof of the Ω̃
(
(n− r)2

)
lower bound in Theorem 1.10 does not provide a description

of a rigid matrix, it merely proves its existence. This brings us to a discussion on explicitness of matrix
constructions.

Lecture 3

1.5 On explicitness
In this section we will see two constructions of very rigid matrices. The main drawback of these constructions
is that we do not know a polynomial time algorithm outputting the entries of these matrices.

First we show that a matrix consisting of algebraically independent elements has maximal rigidity. (One
simple way to construct n2 algebraically independent elements is given by Lindemann-Weierstrass Theorem.)

Lemma 1.12. Let M ∈ Rn×n be a matrix where all n2 elements are algebraically independent over Q. Then
for every 0 ≤ r ≤ n,

RR
M (r) = (n− r)2 .

Proof. Let s = (n − r)2 − 1. Assume, for the sake of contradiction, that RR
M (r) ≤ s. Then there exists an

s-sparse matrix S, such that rank(M + S) ≤ r. Similarly to Theorem 1.10, the n2 entries of M are rational
functions of the s non-zero entries of S and at most n2 − (n − r)2 entries of M . Therefore, polymonials of
at most s + n2 − (n − r)2 < n2 elements generate all n2 entries of M , which contradicts the assumption
on algebraic independence of the elements of M . This implies that RR

M (r) ≥ (n − r)2. On the other hand,
Theorem 1.8 gives us that RR

M (r) ≤ (n− r)2.

While the construction of Lemma 1.12 has optimal rigidity, and each entry of such a matrix may have a
very succinct mathematical description, there is no efficient algorithm outputting all digits of these entries.
Thus, we will require that explicit constructions of matrices have polynomial-time algorithms outputting
their entries.

Another non-explicit construction of rigid matrices is via an exponential-time algorithm. Suppose that
we have a fixed finite field F of size |F| = q. Then there is a trivial algorithm which runs in time qO(n2) and
outputs a rigid matrix. Let us fix an 0 ≤ r ≤ n−Ω(

√
n), and s = Ω

(
(n− r)2/ log n

)
. In time qO(n2), one can

go over all pairs of matrices M,S ∈ Fn×n. For every such pair, the algorithm checks whether S is s-sparse
and rank(M + S) ≤ r. When the algorithm finds an M for which there is no S with the above conditions,
it outputs M as a rigid matrix and halts. (Theorem 1.10 guarantees existence of such a rigid matrix.)

When the field F is infinite, an algorithm cannot enumerate all matrices. But even in this case it is
possible to construct a rigid matrix in time 2O(n2). In order to prove this, we will first show that there exists
a rigid matrix with all entries from {0, 1}. This will give us a way to enumerate all such matrices in time
2O(n2). Next, we will show that given such a matrix, one can check its rigidity in time 2O(n2), which will
finish the proof.
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Theorem 1.13 ([PR94]). For all large enough n, there exists a matrix M ∈ {0, 1}n×n such that

RR
M

( n

200

)
≥ n2

100
.

Proof. Let r = n
200 , and assume that all matrices M ∈ {0, 1}n×n have rigidity RR

M (r) ≤ s. We will show the
lower bound of s ≥ n2

100 . Each such matrix M can be written as

M = S + L1L2 , (1.14)

where S ∈ Rn×n is s-sparse, L1 ∈ Rn×r and L2 ∈ Rr×n. There are
(
n2

≤s
)
ways to choose the set of non-zero

entries in S, let us fix one such set Γ. From Equation 1.14, each entry of M is a degree-2 polynomial of the
entries of L1, L2 and Γ. In particular, there exist a set of n2 degree-2 polynomials {fΓ

ij}i,j∈[n] with variables
being the entries of L1, L2,Γ such that Mij = fΓ

ij(L1, L2, S).
For a set of t-variate polynomials F = {fij}i,j∈[n], we define its set of zero-patterns as the set of all

sequences of zero-non-zero outputs of functions from F :

Z(F ) = {M ∈ {0, 1}n×n : ∃x ∈ Rt ∀i, j ∈ [n], Mi,j = 1fij(x)6=0}.

We will use the following lemma which asserts that for a set F of low-degree polynomials, Z(F ) is small.

Lemma 1.15 ([RBG01]). If F = {fij}i,j∈[n] is a collection of t-variate polynomials of degree at most d,
then

|Z(F )| ≤
(
t+ dn2

t

)
.

Proof of Lemma 1.15. Let m = n2 be the number of polynomials, and let N = |Z(F )|. Let x1, x2, . . . , xN ∈
Rt be a set of points witnessing the N distinct zero-patterns of F . For an i ∈ [N ], let Si ⊆ [m] be the set of
(indices of) polynomials from F which are not zeros at the point xi. For every i ∈ [N ], define the following
polynomial

gi =
∏
k∈Si

fk .

Note that gi(xj) = 0 if and only if there exists fk ∈ Si \ Sj . Therefore, we have gi(xj) = 0 if and only if
Si 6⊆ Sj .

Now we prove that all {gi}i∈[N ] are linearly independent. Suppose, to the contrary, that there exist
a1, a2, . . . , aN ∈ R such that

∑
i∈[N ] aigi = 0, and at least one ai 6= 0. Let

i∗ = arg min
i∈[N ], ai 6=0

|Si| .

We have that ai∗gi∗(xi∗) 6= 0 and
∑
i∈[N ] aigi(xi∗) = 0. Due to the minimality of Si∗ , for every ai 6= 0,

Si 6⊆ Si∗ . This implies that aigi(xi∗) = 0 for all i 6= i∗, and, thus,
∑
i∈[N ] aigi(xi∗) 6= 0, which leads to a

contradiction.
Finally, since the degree of each gi is at most dm, and all gi are linearly independent, N is bounded

from above by the dimension of the space spanned by t-variate polynomials of degree at most dm. Thus,
N ≤

(
t+dm
t

)
.

Recall that from Equation 1.14, all matrices M ∈ {0, 1}n×n can be described by {fΓ
ij}i,j∈[n] for some

Γ ∈
(

[n]×[n]
s

)
, where each polynomial has degree at most 2 and depends on 2rn + s variables. Now, from

Lemma 1.15 with t = 2rn+ s and d = 2, we have that(
2rn+ s+ 2n2

2rn+ s

)
·
(
n2

≤ s

)
≥ 2n

2

. (1.16)
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Assume, for the sake of contradiction, that for some r ≤ n
200 we have s < n2

100 . We have that 2rn+s ≤ n2

50 .
Now, the left-hand side of Equation 1.16 can be bounded from above as follows:(

2rn+ s+ 2n2

2rn+ s

)
·
(
n2

≤ s

)
≤
( 101n2

50
n2

50

)
·
(

n2

≤ n2

100

)
≤ (101e)

n2

50 · (100e)
n2

100 ≤ 2
n2

2 ,

which contradicts Equation 1.16. Thus, we conclude that for any r ≤ n
200 , there exists a matrixM ∈ {0, 1}n×n

such that RR
M (r) ≥ n2

100 .

Now we show that one can check whether a given matrix M ∈ {0, 1}n×n is rigid in time 2O(n2). 3

Theorem 1.17. Let M ∈ {0, 1}n×n, and r and s be non-negative integers. Then one can decide whether
RR
M (r) > s in time 2O(n2).

Proof. Note that RR
M (r) ≤ s if and only if M = S + L1L2 for s-sparse S and L1 ∈ Rn×r, L2 ∈ Rr×n. For

any choice of non-zero entries of S, we have that the entries of M are degree-2 polynomials of t = 2nr + s
variables with {0, 1}-coefficients. It is known that deciding whether such a system of polynomial equations
has a real solution can be solved in time 2O(n2) (see, e.g., Proposition 13.19 in [BPR07]). Since there are(
n2

s

)
≤ 2n

2

choices of s non-zero entries, we have that the total running time of the algorithm is 2O(n2).

This way we have a set of 2n
2

matrices such that at least one of them is rigid, and rigidity of each matrix
can be checked in time 2O(n2). This gives us a 2O(n2)-time algorithm for constructing a rigid matrix over the
reals.

Although the above algorithms construct matrices of high rigidity, their running time is 2Ω(n2). We define
explicit constructions of matrices as matrices that have algorithms outputting all their entries in polynomial
time.

1.6 Summary
In Theorem 1.8 we showed that for every field F, matrixM ∈ Fn×n, and integer 0 ≤ r ≤ n, RF

M (r) ≤ (n−r)2.
Below we summarize the non-explicit lower bounds on rigidity presented in this chapter.

rigidity field running time reference

(n−r)2
logn any finite field existence Theorem 1.10

(n− r)2 any infinite field existence Theorem 1.10

(n− r)2 R algebraically inde-
pendent entries

Lemma 1.12

(n−r)2
logn any fixed finite field 2O(n2) section 1.5

(n− r)2 R 2O(n2) Theorem 1.13,
Theorem 1.17

Table 1.1: Summary of non-explicit lower bounds.

3For more efficient algorithms for the case of low rigidity parameters see [FLM+18]. A PSPACE-algorithm for this problem
follows immediately from the fact that existential theory of the reals lies in PSPACE [Can88].
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1.7 Notes
Rigidity was introduced as a means to study circuit complexity by Valiant [Val77] and Grigoriev [Gri76].
An excellent presentation of the known lower bounds on rigidity over large fields can be found in the
book of Lokam [Lok09]. The books of Jukna [Juk12] and Jukna and Sergeev [JS13] include many appli-
cations of matrix rigidity to circuit complexity. Earlier surveys on rigidity are due to Codenotti [Cod00]
and Cheraghchi [Che05]. The tight upper bound of Theorem 1.8, and the non-constructive lower bounds
of Theorem 1.10 and Theorem 1.13 were proven by Valiant [Val77], and Pudlák and Rödl [PR94]. The proof
of Theorem 1.2 was first given by Midrijānis [Mid05].
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Chapter 2

Explicit Constructions

Lecture 4In this chapter we give three proofs [Fri93, PR94, SSS97] of the best known explicit lower bound of
R(r) ≥ Ω

(
n2

r · log n
r

)
on matrix rigidity. All the three proofs work for (almost) any generator matrix of

a good linear code. Since there are explicit linear codes over all finite fields, the presented proofs work for
all finite fields. We will see that the last construction (due to Shokrollahi, Spielman and Stemann) easily
generalizes to infinite fields.

A linear code over a field F is a linear subspace C ⊆ Fn of dimension k. The distance of the code is the
minimum Hamming distance between two vectors in C or, equivalently, the minimum Hamming weight of a
non-zero vector in C.
Definition 2.1 (Linear code). Let F be a field, and n, k, d be positive integers such that d, k < n. A subspace
C ⊆ Fn is a linear code of dimension k with minimum distance d if

1. dim(C) = k;

2. for every x ∈ C\{0}, ‖x‖0 ≥ d.

A linear code C ⊆ Fn of dimension k can be specified by a generator matrix G ∈ Fn×k such that C is
the column space of G. Since we focus on asymptotic behavior of codes, by a code we will mean an infinite
sequence C = {Ci : i ∈ N} where Ci ⊆ Fn. For our purposes, it will suffice to say that a code is explicit if
there is a polynomial time algorithm that for every n, outputs a generator matrix of Cn in time poly(n). We
will say that a code C is good if for the codes of this sequence we have that k = Θ(n) and d = Θ(n).

There are exist explicit good linear error correcting codes over all finite fields (see, e.g., Justesen and
Goppa codes in [MS77, LG88, vL12]).

Proposition 2.2. For any finite field F, there exists an explicit family of linear error correcting codes over
F of dimension k = n/4 and minimum distance d = δn for a constant δ > 0.

The main result of this chapter is the following.

Theorem 2.3. Let F be a fixed finite field, and G ∈ Fn×k be a generator matrix of a linear code of dimension
k = Θ(n) and distance d = Θ(n), then for every Ω(log n) < r < O(n),

RF
G(r) ≥ Ω

(
n2

r
· log

n

r

)
.

2.1 The lower bound of Friedman
Let us fix a generator matrix G ∈ Fn×k of a good linear code with distance and dimension d, k = Θ(n). We
will prove the lower bound of Friedman in two steps. First, in Theorem 2.4 we will show that G has high
“column rigidity”. That is, in order to drop the rank of G to r, one has to modify at least Ω(nr logq

k
r ) entries

in some column of G. Second, in Theorem 2.5 we will use a simple averaging argument to reduce column
rigidity to rigidity.

10
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Theorem 2.4 ([Fri93]). Let F = Fq be a finite field of size q. Let G ∈ Fn×k be a generator matrix of a
code of dimension k and distance δn for a constant 0 < δ < 1. For any logq k ≤ r ≤ k

4 , if every column of
B ∈ Fn×k contains at most δn

4r logq
k
r non-zero entries, then

rank(G+B) > r .

Proof of Theorem 2.4. Assume, for the sake of contradiction, that there exists B ∈ Fn×kq such that rank(G+

B) ≤ r and each column of B has at most δn
4r logq

k
r nonzero entries.

The proof employs two ideas. First, using a packing argument, we will show that the kernel of G + B
must contain a sparse vector x ∈ Fk. Second, as Gx is a codeword of C and Gx + Bx = 0, Bx is also a
codeword of C and, thus, ‖Bx‖0 must be large due to the minimum distance property of C. This leads to a
contradiction as x and the columns of B are sparse.

Let us draw a Hamming ball of radius d/2 around each point in the kernel of G + B. Since we assume
that rank(ker(G+B)) = k − rank(G+B) ≥ k − r, if

qk−r ·
∣∣Hamming ball of radius d/2 in Fkq

∣∣ > qk,

then there must be two distinct points in the null space of G+ B such that their Hamming balls intersect.
This gives us a non-zero vector x in the kernel of G+ B of sparsity at most d. The following shows that it
suffice to pick d as an even number between 2r

logq
k
r

≤ d ≤ 2r
logq

k
r

+ 2.

∣∣Hamming ball of radius d/2 in Fkq
∣∣ ≥ ( k

d/2

)
· (q − 1)d/2

≥ q
d
2 ·logq[ 2k

d (q−1)] > qr .

Next, since Gx is a non-zero codeword of C and Gx+Bx = 0, we know that Bx is a non-zero codeword of
C and, thus, ‖Bx‖0 ≥ δn. On the other hand, x has only d non-zero coordinates, and each column of B has
at most δn

4r logq
k
r non-zero entries. We have that

‖Bx‖0 ≤ d ·
δn

4r
logq

k

r
≤

(
2r

logq
k
r

+ 2

)
δn

4r
logq

k

r
< δn ,

which contradicts the distance property of C.

Theorem 2.5. Let F = Fq be a finite field of size q. Let G ∈ Fn×k be a generator matrix of a code of
dimension k and distance δn for a constant 0 < δ < 1. Then for any logq k

2 ≤ r ≤ k
8 ,

RF
G(r) ≥

δkn logq
k
2r

8r
.

Proof. Assume, for the sake of contradiction, that there exists S ∈ Fn×kq such that rank(G + S) ≤ r and

‖S‖0 ≤
δkn logq

k
2r

8r . Let J ⊂ [k] be the indices of the k
2 sparsest columns of S, and let SJ be the sub-matrix

of S restricted to the columns in J . By Markov’s inequality, each column of SJ has at most(
δkn logq

k
2r

8r

)
/

(
k

2

)
=
δn

4r
logq

k

2r

many non-zero entries. Now Theorem 2.4 applied to GJ and SJ implies that a column in SJ must contain
more than δn

4r logq
k
2r non-zero entries, which leads to a contradiction.

Now, using good codes from Proposition 2.2, we get a lower bound of RF
G(r) ≥ Ω

(
n2

r · log n
r

)
for any

Ω(logq n) ≤ r ≤ n
32 .

11
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2.2 The lower bound of Pudlák and Rödl
Lecture 5

Theorem 2.6 ([PR94]). Let F = Fq be a finite field of size q. Let G ∈ Fn×k be a generator matrix of a code
of dimension k and distance δn for a constant 0 < δ < 1. Then for any 1 ≤ r ≤ k

q2 ,

RF
G(r) ≥

δkn logq
k
r

8r
.

Proof of Theorem 2.6. Assume that G = L+ S, where rank(L) ≤ r and ‖S‖0 ≤ δnk
4` for an even integer ` to

be chosen later. Then, by Markov’s inequality, there exist k
2 columns of S each having at most δn

2` non-zero
entries. Let G′, L′, S′ ∈ Fn×k/2 be the matrices G,L and S restricted to these columns. In particular, we
have that rank(L′) ≤ r.

The proof is based on the following beautiful idea. By the distance property of the code, each non-zero
linear combination of the columns of G′ has weight at least δn. Now, since the columns of L′ = G′ − S′
differ from the columns of G′ only in a few positions, any short linear combination of the columns of L′ is
still non-zero. This guarantees that L′ must generate a quite large space, which contradicts the assumption
about the low rank of L′.

Observe that for any x ∈ Fk/2q \{0k/2} such that ‖x‖0 ≤ `, we have

‖L′x‖0 = ‖(G′ − S′)x‖0 ≥ ‖G′x‖0 − ‖S′x‖0 ≥ δn−
δn

2`
· ` =

δn

2
> 0 ,

where ‖G′x‖0 ≥ δn follows from the fact that G′x is a non-zero codeword, and the other term follows from
the column-sparsity of S′. This observation implies that for any distinct y1, y2 ∈ Fk/2q with ‖y1‖0, ‖y2‖0 ≤ `

2 ,
L′y1 6= L′y2.

Note that the above gives us a lower bound on the number of vectors in the column span of L′. Thus,

rank(L′) ≥ logq

(
k/2

`/2

)
.

Picking 2r
logq

k
r

≤ ` ≤ 2r
logq

k
r

+ 2 as an even integer, we have

rank(L′) ≥ logq

(
k/2

`/2

)
>
`

2
logq

k

`
≥ r,

which leads to a contradiction. Thus, we conclude that RFq

G (r) ≥ δnk
4` ≥

δnk
8r log k

r .

2.3 The lower bound of Shokrollahi, Spielman and Stemann
In this section we show that a few changes in a matrix always leave some large submatrix unchanged. Namely,
if one makes only O(n

2

r · log n
r ) changes in an n×n matrix, then there must be an untouched r×r submatrix

in it. In particular, if we start with a matrix whose every r× r submatrix has high (or even full) rank, then
the matrix remains high-rank even after O(n

2

r · log n
r ) changes, which implies rigidity.

First, in Lemma 2.8 we will prove that after O(n
2

r · log n
r ) changes in n× n matrix there always remains

an untouched submatrix. Then, in Theorem 2.9, we will apply this lemma to prove simple lower bounds
on rigidity of explicit matrices, and in Theorem 2.11 to prove lower bounds on the rigidity of (normalized)
generator matrices of error-correcting codes.

We will need the classical Kővári-Sós-Turán theorem from extremal graph theory.

Theorem 2.7 (Zarankiewicz problem [KST54, Bol04]). Let n, s ∈ N such that s ≤ n and G be an n × n
bipartite graph. If G has no s× s bi-clique, then the number of edges in G is at most

(s− 1)1/s(n− s+ 1)n1−1/s + (s− 1)n.

12
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Proof of Theorem 2.7. Let G be an n×n Ks,s-free bipartite graph. Let Stars = {(u, T ) ⊆ [n]×
(

[n]
s

)
: (u, v) ∈

E(G), ∀v ∈ T} be the set of left s-stars in G. There are two ways to count Stars: (i) let d1, d2, . . . , dn be
the degrees of left vertices in G, then |Stars| =

∑
i∈[n]

(
di
s

)
and (ii) for each T ∈

(
[n]
s

)
, T forms at most s− 1

many left s-star due to the Ks,s-free property. Namely,∑
i∈[n]

(
di
s

)
≤ |Stars| ≤ (s− 1)

(
n

s

)
.

By convexity, this implies ∑
i∈[n]

(di − s+ 1)s ≤ (s− 1)(n− s+ 1)s .

By Hölder’s inequality,

∑
i∈[n]

(di − s+ 1) ≤

∑
i∈[n]

(di − s+ 1)s

1/s

· n1−1/s ≤ (s− 1)1/s(n− s+ 1)n1−1/s .

Finally, as |E(G)| =
∑
i∈[n] di, we have that

|E(G)| =
∑
i∈[n]

di =
∑
i∈[n]

(di − s+ 1) + (s− 1)n ≤ (s− 1)1/s(n− s+ 1)n1−1/s + (s− 1)n .

Lemma 2.8. Let n, r ∈ N such that log n ≤ r ≤ n, and A be an n × n matrix. If fewer than n(n−r)
2(r+1) log n

r

entries of A are changed, then some (r + 1)× (r + 1) submatrix of A remains untouched.

Proof of Lemma 2.8. Consider an n × n bipartite graph G, whose vertices in one part correspond to the
rows of A, and vertices in the other part correspond to the columns of A. We connect the vertex i from the
first part to the vertex j from the second part if and only if the entry Aij remains unchanged. Thus, an
(r+ 1)× (r+ 1) unchanged submatrix corresponds to an (r+ 1)× (r+ 1) bi-clique in the bipartite graph G.

We assume, towards a contradiction, that there is no (r+ 1)× (r+ 1) untouched submatrix in A, i.e., no
(r + 1)× (r + 1) bi-clique in G. We apply Theorem 2.7 with s = r + 1, and conclude that a graph without
an (r + 1)× (r + 1) bi-clique has at most

r1/(r+1)(n− r)n1−1/(r+1) + rn = n2 − n(n− r) ·
[
1−

( r
n

)1/(r+1)
]

< n2 − n(n− r)
log n

r

2(r + 1)

edges, where the last inequality uses the approximation e−x < 1 − x
2 for x ∈ [0, 1] and holds whenever

r ≥ log n.
Finally, we conclude that if fewer than n(n−r)

2(r+1) log n
r entries in A are changed, i.e., G has more than

n2 − n(n−r)
2(r+1) log n

r edges, then some (r + 1)× (r + 1) submatrix of A remains untouched.

An immediate corollary of Lemma 2.8 is that if every (r + 1)× (r + 1) submatrix of A is full-rank, then
RA(r) ≥ n2

4(r+1) log n
r for log n ≤ r ≤ n

2 . The following theorem applies this idea to Cauchy matrices over
small (but non-constant size) fields.

Theorem 2.9 ([SSS97], non-fixed field). Let F be a field containing at least 2n distinct elements denoted by
x1, x2, . . . , xn and y1, y2, . . . , yn. Let A ∈ Fn×n be a Cauchy matrix: Aij = 1

(xi−yj) . Then

RF
A(r) ≥ n2

4(r + 1)
log

n

r

for log n ≤ r ≤ n
2 .
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Proof of Theorem 2.9. By the above discussion, it suffices to show that every (r+ 1)× (r+ 1) submatrix of
the Cauchy matrix A has full rank for log n ≤ r ≤ n

2 . As every such submatrix is also a Cauchy matrix, it
suffices to show that every Cauchy matrix has full rank.

In Problem 3 of Homework 1, we will show that the determinant of the Cauchy matrix A is

det(A) =

∏
1≤i<j≤n(xj − xi)(yi − yj)∏

1≤i,j≤n(xi − yj)
. (2.10)

Since all xi and yj are distinct, det(A) 6= 0, which finishes the proof.

Finally, we use the above idea to construct (moderately) rigid matrices over constant-size fields.

Theorem 2.11 ([SSS97], fixed field). Let F be a field, n ∈ N, ε ∈ (0, 1), and C ⊆ F2n be an explicit linear
code of dimension n with minimum distance (1 − ε)n. Then, there exists a matrix A ∈ Fn×n that can be
efficiently constructed from any generator matrix of C such that

RF
A(r) ≥ n2

8(r + 1)
log

n

(2r + 1)

for any εn ≤ r ≤ n−2
2 .

Proof of Theorem 2.11. Let G ∈ F2n×n be a generator matrix of C. We run Gaussian elimination in poly-
nomial time to write G in the standard form:

G′ =

(
In
A

)
,

where In is the n× n identity matrix and A ∈ Fn×n.

Claim 2.12. Let s = r + 1. Then, every 2s× 2s submatrix of A has rank at least s.

Proof of Claim 2.12. Assume that there is a 2s × 2s submatrix of A of rank less than s. Without loss of
generality, let it be the submatrix A′ ∈ F2s×2s in the top left corner of A. As rank(A′) < s, there exists a
linear combination of s columns of A′ which equals 0. Since any linear combination of the columns of G′ is
a codeword of C, we have a codeword x ∈ F2n whose first n coordinates have s non-zeros, and the last n
coordinates have at least 2s zeros. This gives us a codeword x ∈ C of sparsity

‖x‖0 ≤ s+ (n− 2s) = n− s = n− r − 1 < (1− ε)n ,

which contradicts the assumption on the distance of the code C.

Finally, Lemma 2.8 implies that in order to drop the rank of A to r, one needs to make at least

n(n− 2r − 2)

4(r + 1)
log

n

2r + 1
≥ n2

8(r + 1)
log

n

2r + 1

changes for any εn ≤ r ≤ n−2
4 .

There are explicit constructions of algebraic-geometric codes [VT91, MS77] of dimension n in F2n
q with

minimum distance (1 − ε)n for ε = 2√
q−1 for every prime square q. In particular, for every prime square

q > 25, Theorem 2.11 applied to the algebraic-geometric codes gives rigidity lower bounds over Fq for some
range of r = O(n).
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2.4 Rigidity of the Walsh-Hadamard Matrix
Lecture 6

Definition 2.13. For any N = 2n, the Walsh-Hadamard matrix HN ∈ CN×N is defined as

H2 =

(
1 1
1 −1

)
,

HN = H⊗n2 ,

where ⊗ denotes the Kronecker product.
First, in Problem 4 of Homework 1 we prove that HN is not rigid for large rank r ≥ N/2. Then, in

Theorem 2.18 we will prove that for every rank r ≤ N/2, the rigidity of HN is at least RC
H(r) ≥ N2

4r .

Lemma 2.14 (Homework 1, Problem 4). Let H ∈ CN×N be the Walsh-Hadamard matrix. Then

RC
H(N/2) ≤ N .

In Problem 5 of Homework 1 we will prove the following facts about matrix norms.

Proposition 2.15. Let M ∈ Cm×n be a matrix, k = min(m,n), and r = rank(M). Let

σ1(M) ≥ . . . ≥ σr(M) > σr+1(M) = . . . = σk(M) = 0

be the singular values of M . Then

• The Frobenius norm ‖M‖F =
(∑m

i=1

∑n
j=1 |Mi,j |2

)1/2

=
(∑k

i=1 σ
2
i (M)

)1/2

.

• The spectral norm ‖M‖2 = σ1(M).

• If M ′ is a submatrix of M , then σi(M ′) ≤ σi(M). In particular, ‖M ′‖2 ≤ ‖M‖2.

We will also need the following lower bound on the rank of submatrices of the Walsh-Hadamard matrix
due to Lokam [Lok95].

Lemma 2.16 ([Lok95]). For any submatrix H ′ ∈ Ca×b of the Walsh-Hadamard matrix H ∈ CN×N ,

rank(H ′) ≥ ab/N .

Proof. By Proposition 2.15,

‖H ′‖2F =

k∑
i=1

σ2
i (H ′) ≤ rank(H ′) · σ2

1(H ′) = rank(H ′) · ‖H ′‖22 ≤ rank(H ′) · ‖H‖22 . (2.17)

Since the absolute values of all entries in H ′ are 1, ‖H ′‖2F = ab. From H · HT = N · IN , we have that
σi(H) =

√
N for 1 ≤ i ≤ N , and, thus, ‖H‖2 =

√
N .

Now, from Equation 2.17,
rank(H ′) ≥ ‖H ′‖2F /‖H‖22 = ab/N .

Now we are ready to present the best known lower bound on rigidity of the Walsh-Hadamard matrix due
to de Wolf [De 06]. Later in the course, we will also prove an upper bound on rigidity of the Walsh-Hadamard
matrix.

Theorem 2.18 ([De 06]). Let H ∈ CN×N be the Walsh-Hadamard matrix. For every r ≤ N/2,

RC
H(r) ≥ N2

4r
.
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Proof. Let s = RC
H(r), and let S ∈ CN×N be such that

rank(H + S) ≤ r and ‖S‖0 ≤ s .

Then by an averaging argument, there exists a set of 2r rows of S with at most 2rs/n non-zero entries.
If N ≤ 2rs/N , then s ≥ N2

2r concludes the proof. If N > 2rs/N , then we consider a submatrix H ′ ∈
C(2r)×(N−2rs/N) of H where all entries of S are zeros. By Lemma 2.16,

r ≥ rank(H ′) ≥ 2r(N − 2rs/N)/N ,

which implies s ≥ N2

4r .

In the table below we summarize the known rigidity lower bounds for explicit matrices.

rigidity reference

n2

r4 log2 r
[PS88]

n2

r3 log r [Raz88]

n2

r2 [Alo94]
n2

r2 [Lok95]
n2

256r [KR98]
n2

4r [De 06]

Table 2.1: Lower bounds on the rigidity of the Walsh-Hadamard matrix.

2.5 Overview of Chapters 1 and 2
See the slides for Lectures 6 and 7 for an overview of the following tools (and their applications).

• Probabilistic Method

• Algebraic Independence Lecture 7

• Polynomial Method

• Zarankiewicz Problem

• Hölder’s inequality

• Zero-patterns Lecture 8

• Hadamard Matrix

• Spectral Methods

• Error-Correcting Codes

16



Chapter 3

Semi-explicit constructions

Lecture 9

3.1 Constructions with independent entries
Shoup and Smolensky [SS91] used an algebraic dimension argument for proving super-linear lower bounds
against linear circuits of sub-polynomial depth. Lokam [Lok00] extended their argument, and proved a lower
bound on rigidity of Vandermonde matrices containing the powers of n algebraically independent entries.
Later Lokam [Lok06] generalized these ideas for proving quadratic lower bounds on rigidity for linear rank of
matrices with infinite precision in the entries. Kumar, Lokam, Patankar and Sarma [KLPS14] used algebraic
geometry arguments to construct a matrix with optimal rigidity parameters for every r (at the expense of
having infinite precision in the entries, too).

This week we will see some of these constructions. Namely, we will prove rigidity lower bounds for
a Vandermonde matrix with algebraically independent entries [Lok00], and for a matrix consisting of square
roots of distinct primes [Lok06]. See [LTV03, Lok09, KLPS14, GHIL16] for excellent overviews of the
algebraic geometry approach to rigidity.

Recall from Lemma 1.12 that any matrix with n2 algebraically independent entries is rigid. We would
like to reduce the number of algebraically independent entries needed for constructions of rigid matrices, as
well as to weaken the assumption on their independence. In the next class we will show that n2 linearly
independent (but not algebraically independent) numbers are also sufficient for high rigidity. Today we will
show that even n algebraically independent entries are sufficient for (moderate) rigidity.

3.1.1 Vandermonde matrix with algebraically independence entries
Today we will show that Vandermonde matrices V with powers of algebraically independent entries have
rigidity RF

V (r) ≥ Ω(n2) for r ≤ O(
√
n).

Definition 3.1 (Vandermonde matrix). A Vandermonde matrix V ∈ Fn×n is a matrix of the form Vij = xji
for some x1, x2, . . . , xn ∈ F.

We will prove that Vandermonde matrices V are rigid as follows. First, in Definition 3.3 we will introduce
a measure of algebraic independence (over Q) of a set of numbers, called the Shoup-Smolensky dimension.
Second, in Lemma 3.4 we will prove that the Shoup-Smolensky dimension of low-rank matrices is low. Finally,
in Lemma 3.5 we will show that the Shoup-Smolensky dimension of V − S for any sparse matrix S is large.
From this, in Theorem 3.2, we will conclude that V is rigid.

Theorem 3.2 (Vandermonde matrix with algebraically independent entries is rigid). Let x1, . . . , xn ∈ C
be algebraically independent over Q, and let V ∈ Cn×n be the Vandermonde matrix Vi,j = xji . For any
1 ≤ r ≤

√
n

10 ,
RC
V (r) ≥ n(n− 100 · r2)/2 .
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For example, when r ≤ ε
√
n for a small enough ε > 0, we have RC

V (r) ≥ Ω(n2). However, it is an
interesting open problem to prove non-trivial rigidity lower bound for such Vandermonde matrices in the
regime of r = ω(

√
n).

Definition 3.3 (Shoup-Smolensky dimension [SS91]). For any t, n ∈ N and A ∈ Cn×n, the t-Shoup-
Smolensky dimension of A, denoted dimSS

t (A), is the dimension of the vector space over Q spanned by
products of t distinct elements of A.

To prove Theorem 3.2, we will to show that rank-r matrices have Shoup-Smolensky dimension ≤
(
nr+t
t

)2
,

while V even after s changes has Shoup-Smolensky dimension ≥ (n− s
t )
t.

Lemma 3.4. For any t, n ∈ N, and A ∈ Cn×n of rank r = rank(A),

dimSS
t (A) ≤

(
nr + t

t

)2

.

Proof of Lemma 3.4. Since A has rank r, there exists B,C> ∈ Cn×r such that A = BC. Then each entry
of A can be written as a degree-2 polynomial where each monomial is of the form b1c1 for some b1 from B
and c1 from C.

Thus, any t-wise product of entries from A is a degree-2t polynomial where each monomial is of the form∏
i∈[t] bici for some bi from B and ci from C for all i ∈ [t]. This implies that the vector space spanned by

the products of t distinct elements of A is also spanned by these monomials. As the number of n-variate
monomials of degree ≤ d is

(
n+d
d

)
, we conclude that dimSS

t (A) ≤
(
nr+t
t

)2
.

Lemma 3.5. Let x1, . . . , xn ∈ C be algebraically independent over Q, and let V ∈ Cn×n be the Vandermonde
matrix Vi,j = xji . For any 1 ≤ t ≤ n

2 , 1 ≤ s < tn, and S ∈ Cn×n such that ‖S‖0 ≤ s,

dimSS
t (V − S) ≥

(
n− s

t

)t
.

Proof of Lemma 3.5. Let J ⊂ [n] be the indices of the t sparsest rows of S, and SJ , VJ to be the restrictions
of S and V to the rows in J . By Markov’s inequality, each row in SJ has at most s

t non-zero entries.
Now, for each row in VJ − SJ , there are at least (n− s

t ) unchanged entries of the form xji . Note that if
x1, x2, . . . , xn are algebraically independent, then any collection of distinct monomials of these variables is
linearly independent. As there are at least (n − s

t )
t distinct monomials in the set of t-wise products of the

entries from VJ − SJ , we conclude that dimSS
t (V ) ≥ (n− s

t )
t.

Finally, Theorem 3.2 follows from Lemma 3.4 and Lemma 3.5.

Proof of Theorem 3.2. For the sake of contradiction, assume that V = L + S where rank(L) ≤ r and
‖S‖0 ≤ s. Let us set t = n

2 and s = n
(
n− 100r2

)
/2. By Lemma 3.4, we know that

dimSS
t (L) ≤

(
nr + t

t

)2

≤

(
e
(
nr + n

2

)
n
2

)n
2

≤ (81r2)
n
2 .

By Lemma 3.5,

dimSS
t (V − S) ≥

(
n− s

t

)t
=
(
100r2

)n
2 .

Therefore, dimSS
t (V − S) > dimSS

t (L), which contradicts the assumption that V = L+ S.

3.1.2 Matrix with square roots of distinct primes
Lecture 10Today we will show that a matrix A with square roots of n2 distinct primes has rigidity RC

A(r) ≥ Ω(n2)
for every 1 ≤ r ≤ n

32 .

Theorem 3.6. Let A ∈ Cn×n be a matrix with square roots of n2 distinct primes as its entries. For any
1 ≤ r ≤ n

32 ,
RC
A(r) ≥ n(n− 16r) .
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Similarly to the proof of Theorem 3.2, we will show that any matrix with square roots of distinct primes
has large Shoup-Smolensky dimension even when some entries of the matrix are changed.

We will use the Besicovitch theorem [Bes40] about linear independence over Q.

Theorem 3.7 (Besicovitch [Bes40]). Let a1, a2, . . . , am be m distinct square roots of square-free integers,
then they are all linearly independent over Q.

Lemma 3.8. Let A be an n×n matrix with square roots of n2 distinct primes as its entries, and S ∈ Cn×n
such that ‖S‖0 ≤ s. For any 1 ≤ s, t ≤ n2,

dimSS
t (A− S) ≥

(
n2 − s
t

)
.

Proof of Lemma 3.8. There are at least n2−s square roots of distinct primes in the matrix A−S. Therefore,
there are at least

(
n2−s
t

)
t-wise products of A − S resulting in distinct square roots of square-free integers.

Then, by Theorem 3.7, the t-Shoup-Smolensky dimension of A− S is at least dimSS
t (A− S) ≥

(
n2−s
t

)
.

Now we finish the proof of Theorem 3.6.

Proof of Theorem 3.6. Let us set t = nr and s ≤ n(n − 16r). Assume, for the sake of contradiction, that
A = L+ S where rank(L) ≤ r and ‖S‖0 ≤ s. From Lemma 3.4,

dimSS
t (L) ≤

(
nr + t

t

)2

≤
(

2nr

nr

)2

< 22nr·2 = 16nr .

On the other hand, from Lemma 3.8,

dimSS
t (A− S) ≥

(
n2 − s
t

)
≥
(

16nr

nr

)nr
= 16nr .

Thus, dimSS
t (A− S) < dimSS

t (L), which leads to a contradiction.

3.1.3 Lower Bounds against Linear Circuits
While the rigidity lower bound from Section 3.1.2 implies a super-linear circuit lower bound against linear
circuits for a (not fully explicit) matrix A with square roots of distinct primes, the same technique can be
used to directly prove stronger circuit lower bounds for the same matrix A. Shoup and Smolensky [SS91]
proved that any linear circuit (of any depth) computing the linear transformation given by such a matrix A
must have size at least Ω(n2/ log n) (which is optimal as every linear function can me computed by a circuit
of size O(n2/ log n) [Lup56]).

For simplicity, in this section for an n×n matrix A, by its n2-Shoup-Smolensky dimension dimSS
n2 (A) we

will mean the dimension of the vector space over Q spanned by products of at most n2 elements of A (rather
than exactly n2 elements of A). We will use the following technical lemma.

Lemma 3.9. Let C be a linear circuit of size s computing x→ Bx for B ∈ Cn×n. Then

dimSS
n2 (A) ≤ (n2 + 2s)2s .

Proof. See the class video and slides for a full proof.

Now we can prove an optimal circuit lower bound for matrices consisting of square roots of distinct
primes.

Theorem 3.10. Let A ∈ Cn×n be a matrix with square roots of n2 distinct primes as its entries. For any
1 ≤ r ≤ n

32 ,
RC
A(r) ≥ n(n− 16r) .
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Proof. By Besicovitch Theorem (Theorem 3.7), all 2n
2

products of subsets of elements of A are linearly
independent, therefore

dimSS
n2 (A) ≥ 2n

2

.

This bounds, together with the bound of Lemma 3.9, implies

s ≥ Ω(n2/ log n) .

3.2 Project Topics
Lecture 11We discussed the following project ideas (see the slides and video for more details):

• Provable Cryptography

• Static Data Structures

• Random Algebraic Method

3.3 Rigidity of Hankel and Toeplitz matrices
Lecture 12

Definition 3.11 (Hankel/Toeplitz matrix). A ∈ Fn×n is a Hankel matrix if Ai,j = ai+j−1 for some
a1, a3, . . . , a2n−1 ∈ F. T ∈ Fn×n is a Toeplitz matrix if Ti,j = ti−j for some t−(n−1), t−(n−2), . . . , tn−1 ∈ F.

A =


a1 a2 . . . an
a2 a3 . . . an+1

...
...

. . .
...

an an+1 . . . a2n−1

 , T =


t0 t−1 . . . t−(n−1)

t1 t0 . . . t−(n−2)

...
...

. . .
...

tn−1 tn−2 . . . t0

 .

A random Hankel matrix A ∈ Fn×n is a Hankel matrix where a1, a3, . . . , a2n−1 ∈ F are independent
uniformly random elements of F. In Theorem 3.13 we will prove a lower bound on the rigidity of a random
Hankel matrix, and later in the course we will prove an upper bound on the rigidity of all Hankel matrices.
These bounds naturally extend to the case of Toeplitz matrices. Note that only O(n) random bits are needed
to sample a random Hankel/Toeplitz matrix over F2. We will need the following generalization of Toeplitz
matrices.
Definition 3.12. B ∈ Fn×n is a k-Hankel matrix for k ∈ [n] if Bi,j = bk(i−1)+j for some b1, b2, . . . , b(n−1)k+n ∈
F.

B =


b1 b2 . . . bn
bk+1 bk+2 . . . bk+n

...
...

. . .
...

bk(n−1)+1 bk(n−1)+2 . . . bk(n−1)+n

 .

For example, 1-Hankel matrix is a usual Hankel matrix from Definition 3.11. In particular, every row of a
random 1-Hankel matrix has one new random element. A random n-Hankel matrix is a uniform random
matrix with n2 random entries. In general, every row of a random k-Hankel matrix has k new random
entries.

Theorem 3.13 (Rigidity of a random Hankel matrix [GT16]). For any
√
n ≤ r ≤ n

32 , a random Hankel
matrix A ∈ Fn×n has

RF2

A (r) ≥ Ω

(
n3

r2 log n

)
with probability 1− o(1).
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The bound of Theorem 3.13 improves on the known explicit rigidity bounds (presented in chapter 2) for
r = o

(
n

logn log logn

)
. For example, for r = n1−ε for a constant ε ∈ (0, 1

2 ), Theorem 3.13 gives a lower bound
of

RF2

A

(
n1−ε) ≥ Ω

(
n1+2ε

log n

)
,

while the bounds of chapter 2 give only RF2

A

(
n1−ε) ≥ Ω(n

2

r · log n
r ) ≥ Ω(n1+ε log n).

We will prove Theorem 3.13 in two steps. Let n and k be integers such that k divides n. In the first
step, we will show that any n× n Hankel matrix can be partitioned into k2 matrices of size n

k ×
n
k , each of

which is k-Hankel. In the second step, we will prove that a random k-Hankel matrix is quite rigid with high
probability. From these two facts, we will conclude that a random Hankel matrix has high rigidity (with
high probability).

Lemma 3.14 (Partitioning of a Hankel matrix). Let n, k ∈ N such that k divides n. Any Hankel matrix
A ∈ Fn×n can be partitioned into k2 matrices Ai,j ∈ Fn

k×
n
k for i, j ∈ [k], s.t. each Ai,j is k-Hankel.

Proof of Lemma 3.14. Let m = n
k . For i, j ∈ [k], let us define the following sets of indices of rows and

columns

Ii = {i, i+ k, . . . , i+ (m− 1)k} ;

Jj = {(j − 1)m+ 1, (j − 1)m+ 2. . . . , jm} .

We partition the Hankel matrix A into k2 submatrices Ai,j , i, j ∈ [k] as follows: the matrix Ai,j contains all
entries of A at the intersections of the rows Ii and the columns Jj . It is easy to see that each Ai,j ∈ Fm×m,
and that {(Ii, Jj)}i,j∈[m] forms a partition of [n]× [n].

It remains to show that each Ai,j is k-Hankel. Consider the element of the matrix Ai,j located at the
position (s, t):

Ai,js,t = Ai+(s−1)k,(j−1)m+t .

Since A is a Hankel matrix, by Definition 3.11, Ai+(s−1)k,(j−1)m+t = ai+(j−1)m−1+(s−1)k+t. Now, let b` =
ai+(j−1)m−1+` for ` ∈ [(m− 1)k +m]. Then

Ai,js,t = Ai+(s−1)k,(j−1)m+t = ai+(j−1)m−1+(s−1)k+t = b(s−1)k+t ,

which satisfies Definition 3.12.

Now we prove Theorem 3.13 using Lemma 3.14 and Lemma 3.15.

Proof of Theorem 3.13. We will prove this theorem for every
√
n ≤ r ≤ n

32 such that 2r divides n, the same
result (with a larger constant factor hidden in the Ω-notation) for other values of r will follow immediately.
Let us set m = 2r and k = n

m .
From Lemma 3.14, A can be partitioned into m × m k-Hankel matrices {Ai,j}i,j∈[k]. For the sake of

contradiction, assume that A = S + L where ‖S‖0 ≤ n3

1600r2 logn and rank(L) ≤ r. By averaging, there exist
i, j ∈ [k] such that Ai,j = Si,j + Li,j where

‖Si,j‖0 ≤
‖S‖0
k2
≤ n

400 log n
,

and rank(Li,j) ≤ rank(L) ≤ r. In particular, Ai,j is not rigid: RF2

Ai,j (r) ≤ n
400 logn .

However, Lemma 3.15 and union bound imply that with probability 1−m2 ·2−km/20 = 1−o(1), for every
i, j ∈ [k], RF2

Ai,j (m/2) ≥ km
400 logm = n

400 logm > n
400 logn . This contradicts the assumption that A = S + L.

We conclude that A has rigidity RF2

A (r) ≥ n3

1600r2 logn with probability 1− o(1).

Lecture 13
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Lemma 3.15 (Rigidity of k-Hankel matrices). For any 16 ≤ k ≤ m, a random m×m k-Hankel matrix B
has rigidity

RF2

B (m/2) ≥ km

400 logm

with probability at least 1− 2−km/20.

Proof of Lemma 3.15. Let S be a fixed m×m matrix, and C = B + S. In the following we will show that
rank(C) ≤ m/2 with probability at most 2−km/10, let us finish the proof of Lemma assuming this. Since for
s = km

400 logm , the number of s-sparse matrices S is bounded from above by
(
m2

≤s
)
≤ 24s logm ≤ 2km/100, we

conclude that B has rigidityRF2

B (m/2) ≥ km
400 logm with probability at least 1−2km/100·2−km/10 ≥ 1−2−km/20.

Let Ci denote the ith row of C for i ∈ [m]. Assuming that rank(C) ≤ m/2, let us greedily pick a row
basis of C. Namely, we go from the first to the last rows of C, and include the index of the current row in
the set I if and only if the current row is not spanned by the previous rows. We have |I| ≤ m/2, and for
every i ∈ [m] \ I, the row Ci is spanned by the rows ({Ci′}i′∈I∩[i−1]). In particular,

Pr
B

[rank(C) ≤ m/2] = Pr
B

[
∃I ⊆ [m], |I| ≤ m/2: ∀i ∈ [m] \ I, Ci ∈ span({Ci′}i′∈I∩[i−1])

]
(3.16)

Now we fix a set I ⊆ [m] of size |I| ≤ m/2, and we will show that

Pr
B

[
∀i ∈ [m] \ I, Ci ∈ span({Ci′}i′∈I∩[i−1])

]
≤ 2−km/8 . (3.17)

Then a union bound over fewer than 2m choices of I ⊆ [m] will imply that the expression in Equation 3.16
is upper bounded by 2−km/10, which will finish the proof.

It remains to show that for every fixed set I ⊆ [m] of size |I| ≤ m/2, Equation 3.17 holds. First, let
us greedily choose row indices 1 ≤ i1 < i2 < · · · < i` ≤ m such that (i) it 6∈ I for each t ∈ [`], and (ii)
it+1− it ≥ m

k for each t ∈ [`− 1]. Namely, i1, i2, . . . , i` are row indices of C that do not belong to the chosen
basis I, and the distance between any two rows is at least m

k . If we greedily pick indices i1, i2, . . . , i`, then
each time when we pick one row we remove at most m

k − 1 rows, and we have ` ≥ m−|I|
dm/ke ≥

m/2
dm/ke ≥ k/4. For

every t ∈ [`], let Et be the event that Cit ∈ span({Ci′}i′∈I∩[it−1]). Then the expression from Equation 3.17
is bounded by

Pr
B

[
∀i ∈ [m] \ I, Ci ∈ span({Ci′}i′∈I∩[i−1])

]
≤Pr

B
[Et, ∀t ∈ [`]]

=
∏̀
t=1

Pr
B

[Et | Et′ , ∀t′ < t] .

In what follows, we will prove that PrB [Et | Et′ , ∀t′ < t] ≤ 2−m/2, and, since ` ≥ k/4, this will finish the
proof of Equation 3.17 and the proof of Lemma.

Note that the events Et′ , ∀t′ < t depend only on the row Cit−1 and above. Therefore, the values of the
first it−1 rows of B completely determine the events Et′ , ∀t′ < t. Since it−1 ≤ it − m

k , the values of the first
it − m

k rows of B also completely determine those events. Since B is k-Hankel, the first it − m
k rows of B

are specified by elements b1, . . . , bk(it−1) (see the picture below). Instead of conditioning on Et′ , ∀t′ < t, we
will prove a stronger statement: for any values b1, . . . , bk(it−1) of the elements in the first it − m

k rows of B,
PrB

[
Et | b1, . . . , bk(it−1)

]
≤ 2−m/2. (In particular, this holds for all values of b1, . . . , bk(it−1) that satisfy the
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events Et′ , ∀t′ < t.) 

b1 b2 . . . bm
bk+1 bk+2 . . . bk+m

...
...

. . .
...

bk(it−1)−m+1 bk(it−1)−m+2 . . . bk(it−1)

...
...

. . .
...

bk(it−1)+1 bk(it−1)+2 . . . bk(it−1)+m

...
...

. . .
...

bk(m−1)+1 bk(m−1)+2 . . . bk(m−1)+m


row it − m

k

row it

Now let the row Cit be spanned by the basis rows from above it:

Cit =
∑

j∈I∩[it−1]

djCj (3.18)

for some constants dj ∈ {0, 1}. Let us fix the coefficients of this linear combination: fix dj ∈ {0, 1} for each
j ∈ I∩[it−1]. The final observation is that for fixed b1, . . . , bk(it−1) and fixed dj , there is a unique assignment
to the row Bit that satisfies Equation 3.18. Indeed, the values of C in the first k columns and the first it− 1
rows are fixed (as b1, . . . , bk(it−1) are fixed). Therefore, this linear combination gives a unique assignment to
the first k elements of Bit : to the elements bk(it−1)+1, . . . , bkit . After this, we have that the first 2k elements
in the first it − 1 rows are fixed (as now b1, . . . , bkit are fixed). Now the fixed linear combination gives a
unique assignment to the next k elements of Bit . We repeat this until we find a unique assignment to Bit
that satisfies Equation 3.18. Thus, for each fixed set of values dj ∈ {0, 1} for j ∈ I ∩ [it − 1], the probability
of this event is exactly 2−m. The number of such sets dj ∈ {0, 1} is 2|I∩[it−1]| ≤ 2|I| ≤ 2m/2. By a union
bound, this gives us that

Pr
B

[Et | Et′ , ∀t′ < t] ≤ Pr
B

[
Et | b1, . . . , bk(it−1)

]
≤ 2m/2 · 2−m = 2−m/2 .

Note that the problem of checking whether a given matrix A has rigidity at leastRF
A(r) ≥ s is in coNP for

all values of r and s. We can use Theorem 3.13 to construct a matrix M with rigidity RF2

M (r) ≥ Ω
(

n3

r2 logn

)
in EcoNP = ENP.1 Indeed, in time 2O(n) we brute force all Hankel matrices, we use coNP oracle (or NP
oracle) to check whether a matrix is rigid. Theorem 3.13 guarantees that this algorithm will find a matrix
with the desired rigidity parameters.

In fact, such a matrix can be constructed in time E without an NP oracle. We will prove this in
Homework 2.

1When we say that a matrix M belongs to ENP, we mean that there exists a family of matrices Mn ∈ Fn×n for infinitely
many values of n such that there is a 2O(n)-time algorithm with an NP oracle that on input 1n outputs Mn.
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