These lecture notes are based on a manuscript of a book on matrix rigidity by Chi-Ning Chou and
Sasha Golovnev.

Chapter 1

Introduction

1.1 Definitions and examples

One of the main questions in computational complexity is that of proving lower bounds on the size of
Boolean circuits computing explicitly given functions. While most Boolean functions of n inputs require
circuits of size 2" /n [Shad9a, Luph9al, we can only prove small linear lower bounds for explicitly defined
functions [LRO1, IM02, Blu83, DK11, FGHK16].

The same question remains open for linear circuits computing linear Boolean functions. Since any linear
function with one output can be computed by a circuit of size at most n, we study linear functions with n
inputs and n outputs. A random linear map with n outputs requires circuits of size n?/logn [Lup56], but
the best known lower bound for an explicit linear map is only 3n — o(n) [Cha94a].

The notion of matrix rigidity was introduced by Valiant [Val77] as a tool for proving lower bounds against
linear circuits. (A related notion of separability was introduced by Grigoriev [Gri76].)

We will use the following notation. A matrix A is called s-sparse, if the number of non-zero entries in A
is at most s. We will use I,,,0,, and J,, to denote the identity matrix, zero matrix, and all-ones matrix of
size n x n. For a matrix A € F"*" by ||Al|o we denote the number of non-zero entries in A.

Definition 1.1 (Rigidity). Let F be a field, A € F**" be a matriz, and 0 < r < n. The rigidity of A over F,
denoted by RY(r), is the Hamming distance between A and the set of matrices of rank at most r. Formally,

RE (r) := i Cllo .
ar) oL ng llo

In other words, a matrix A has rigidity R (r) > s if and only if A € F**" cannot be written as a sum
A=S+1L,

where S € F"*™ is (s — 1)-sparse matrix, and L € F**" is low-rank: rank(L) <.

Valiant [Val77] proved that any linear map A € F"*" computed by a linear circuit (over a field F) of depth
O(logn) and size o(nloglogn) has rigidity at most RY (en) < n'*° for every constant ¢,5 > 0. Therefore,
an explicit matrix of higher rigidity would give us a super-linear lower bound against linear circuits of
logarithmic depth. Despite more than 40 years of research, the problem of proving super-linear lower bounds
for such circuits remains open.

Let us now see the rigidity of a few specific matrices.

e If A € F™*" has rank rank(A) = k over the field F, then RE(r) = 0 for every » > k. Indeed, A can
be written as a sum of A and 0,,, where rank(A) < r and 0,, is O-sparse. Similarly, an s-sparse matrix
A € F™*" has rigidity RY (r) < s for any value of r.

1Here by explicit functions we mean functions computable in time polynomial in n. We will later discuss the notion of
explicitness in greater detail.

Lecture 1



Matrix Rigidity Sasha Golovnev September 2, 2020

e For any 0 <r < n, ’R]I;n (r) = n —r. Indeed, if we change n — r ones of I,, to zeros, then the resulting
matrix has rank r, which implies that R} () <n—r. On the other hand, for any (n—r)-sparse matrix
B, from subadditivity of rank,

rank(I,, + B) > rank([,) —rank(B) >n—(n—r) =1,
which gives us that R} (r) >n —r.

e Let n be a multiple of 2r, and let M,, € F"*™ be a matrix consisting of matrices I, stacked together
side by side:

I2r T IQT

My =1 : oo

IQT e 127’

We will show that this matrix has rigidity R% (r) = Z—:.

Theorem 1.2 (|Mid05]). For any field F, and any n divisible by 1 < 2r < n,

Ry (1) =—.
M, (1) Ar

Proof of Theorem 1.2. M, consists of % copies of the identity matrix I5.. In order to drop the rank
of A to r, the rank of each copy of I, must be dropped to r. From the previous example we know that
2

in order to decrease the rank of I, to r, one needs to change at least r elements. Thus, % =
entries of M,, must be changed. Note that this bounds is tight, é.e., RI]FV[n (r)= %. O

The bound of Theorem 1.2 easily generalizes to all values r < n/2 with a loss of a multiplicative factor

. . .e— . . . . . . . . . . 2

of 2. This theorem was proven by Midrijanis [Mid05], and it gives a simple IflatrlX with rigidity RIJFMn (r) > %
We will see later that there exist matrices with much higher rigidity €2 ((n — r)z). Embarrassingly, the

best known lower bound for an ezplicit matrix improves on the g—i bound only by a logarithmic factor.

1.2 Circuit Complexity

A circuit corresponds to a simple straight line program where every instruction performs a binary operation
on two operands, each of which is either an input or the result of a previous instruction. The structure
of this program is extremely simple: no loops, no conditional statements. Still, we know no functions in
P (or even NP, or even ENP) that requires even 3.1n binary instructions (“size”) to compute on inputs of
length n. This is in sharp contrast with the fact that it is easy to non-constructively find such functions:
simple counting arguments show a random function on n variables has circuit size (2" /n) with probability
1 —o(1) [Sha49b, Lup59b].

For small-depth circuits we know several strong lower bounds. (Note that when working with circuits
of constant depth, we do not pose bounds on the fan-ins of the gates.) Depth-2 circuits (after a simple
normalization) are just CNFs or DNFs. It is easy to see that the parity function @, of n inputs requires
CNFs and DNFs of size ©(2"). For depth-d circuits, we know a lower bound of 22/ (71) [Has86, HJP93,
PPZ97, Bop97, PPSZ05, MW17]. Thus, for depth d = o(logn/loglogn) we have non-trivial lower bounds
even if the fan-ins of the gates are unbounded. For circuits with fan-in 2, we known functions which cannot
be computed by circuits of depth 1.991ogn [Nec66]. Thus, a problem on the frontier is

Problem 1.3. Prove a lower bound of 10n against circuits of depth 10logn.
More generally, a lower bound of w(n) against circuits of depth O(logn).

Super-linear lower bounds are not known even for linear circuits, i.e., circuits consisting of only gates
computing linear combinations of their two inputs. Note that every linear function with one output has a
circuit of size n — 1 (and depth logn). For linear circuits, we consider linear transformations, multi-output
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functions of the form f(x) = Ax where A € F"*™. For a random matrix A € {0,1}"*", the size of the
smallest linear circuit computing Ax is ©(n?/logn) [Lup56] with probability 1 — o(1), but for explicitly-
constructed matrices the strongest known lower bound is 3n — o(n) [Cha94b]. This leads us to another
problem on the frontier:

Problem 1.4. Prove a lower bound of w(n) against linear circuits of depth O(logn).

Formally, Problem 1.3 and Problem 1.4 are incomparable, as in the linear case we study a weaker
computational model (which makes it easier to prove lower bounds), but are limited to proving lower bounds
for a smaller class of problem (which makes it harder to prove lower bounds).

1.3 Circuits and Rigidity

In this section, we will present a seminal result of Valiant [Val77| showing that rigid matrices require log-depth
circuits of super-linear size. We start with the definition of linear circuits.

Definition 1.5 (Linear circuits). Let F be a field and n € N. A circuit C with n inputs and n outputs is a
directed acyclic graph where n vertices have fan-in zero and are labeled by the inputs, all other vertices have
fan-in two and are labeled with affine functions (over F) of their two inputs, n of these vertices are labeled as
outputs. For every fized input, the value at each node is computed by applying the corresponding functions.
Such a circuit C' naturally defines a linear map f: F™ — F™, and the corresponding matriz A € F"*™ such
that f(x) = Ax.

The depth d(C) of a circuit C is the length of the longest path in the circuit. The size s(C) of C is defined
as the number of vertices in C.

The following theorem shows a connection between lower bounds for linear circuits and matrix rigidity.

Theorem 1.6. Let F be a field, and A € F**" be a family of matrices for n € N. If RY (en) > n'* for
constant €,0 > 0, then any O(logn)-depth linear circuit computing x — Ax must be of size Q(n - loglogn).

The proof of Theorem 1.6 repeatedly uses the following beautiful graph theoretic lemma due to Erdgs,
Graham, and Szemerédi [EGS76]: If G is a directed acyclic graph with s edges and of depth d, then there is
a set of s/logd edges whose removal decreases the depth of G by a factor of two. We will follow the proof
of this lemma from [Vio09].

Lemma 1.7 ([EGST76]). Let G be an acyclic digraph with s edges and of depth d = 2F. There exists a set of
s/logd edges in G such that after their removal, the longest path in G has length at most d/2.

Proof of Lemma 1.7. For ease of exposition, we follow [Vio09] and define a depth function. Let G = (V, E)
be an acyclic digraph. We say that D : V — {0,1,...,d} is a depth function for G if for any (a,b) € E,
D(a) < D(b). It is not difficult to see that G has depth at most d if and only if there exists a depth function
D:V —={0,1,...,d—1} for G.

We start with G of depth at most d = 2* and its depth function D : V' — {0,1,...,2*¥}. Now, consider
the following partition of F using the depth function D. For each i € [k], define

E; = {(a,b) € E : the most significant bit where D(a), D(b) differ is the i*" bit}.
As {E;}icp is a partition of E, by the averaging argument, there exists i* € [k] such that
_IEl_ 1B

~ k" logd’

Now, it suffices to show that the depth of G’ = (V, E’), where E' = E\E;-, is at most 2¥~1. This can be
shown by exhibiting a depth function D’ : V' — {0,1,...,2¥=1 —1} for G’. The following shows that we can
take D’'(v) to be D(v) without the i*'! bit.

Counsider an edge (a,b) € E’. Since (a,b) € E, D(a) < D(b). In particular, there exists ¢ € [k] such that
the most significant bit where D(a) and D(b) differ is i. Since (a,b) € E’, the edge (a,b) was not removed,
so i # i*. Therefore, after removing the bit ¢*, this bit 4 is still the most significant bit where D’(a) and
D'(b) differ. This implies that D’(a) < D'(b), and that D’ : V — {0,1,...,28=1 — 1} is a depth function
for G'. O

|E;«
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Figure 1.1: In order to compute the values of the outputs of the circuit C, first we precompute the values
of en removed edges (or vertices V'), and store them in variables p;. Now each output ¢; of the circuit C
can be computed from n’ inputs and precomputed bits. In particular, A = BM + C, where C' encodes
the dependence of the outputs ¢; on the inputs x;; B encodes the dependence of ¢; on p;; M encodes the
dependence of p; on x;. Since C is sparse, and BM is low rank, the matrix A is not rigid.

Now we finish the proof of Theorem 1.6.

Proof of Theorem 1.6. We will show that for every constant c¢q > 2, every circuit of depth at most ¢4logn
computing x — Ax must be of size at least csnloglogn for a constant ¢; = m. Suppose, to the
contrary, that there is a linear circuit C of size s = csnloglogn and depth d = c4logn = 2* that computes
x — Az. Let G be the underlying acyclic digraph of C.

First, we apply Lemma 1.7 to G ¢ times, and get a graph G’ such that (i) only

1 n 1 " 1 < st
8 logd  logd—1 logd— (t—1)/) ~ logd — (t — 1)

edges are removed from G and (ii) the longest path in G’ is of length at most d’ < d/2°.
By setting ¢t = logcg + log 1/, the longest path in G’ has length < d/2' = §logn, and the number of
removed edges is at most
st st < tesnloglogn
logd — (t—1) logd/2 = loglogn

Now, let E be the set of removed edges and V' be the set of tail vertices of the edges from E. Since all
paths in G’ are no longer than d’ and all in-degrees are at most 2, every output vertex in G’ is now connected
to at most 2¢ input variables. Therefore, every output is a (linear) function of at most 2d' inputs and the
functions computed at the removed edges (or the vertices V).

More specifically, let A; be the i*" row of A, i.e., the linear form computed by the i*" output vertex of
G. Then A; can be written as the following sum

Ai: Z bijvj—i—ci
JElV]

where v; is the linear form computed by the 4t element in V' and ¢; is the linear form computed by the i*®

output vertex in G’. Note that since ¢; only depends on at most 2d' input variables.
Therefore, the matrix A can be written as follows.

A=BM+C

where B € F*»*IV'l consists of the coefficients bij, rows of M € FlV'Ixn compute linear forms of vertices
from V', and C € F™"*™ is a row sparse matrix where the number of non-zero entries in each row is at most
20" = p?,
The above argument gives us that R% ([V’]) = RE (en) < n®, which contradicts the assumption on the
rigidity of A.
O
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1.4 Existence of Rigid Matrices

In this section, we will show that for any field F, most of the n x n matrices have the highest possible rigidity
for any rank parameter r.

It turns out that for every matrix A and field F, there is a simple upper bound R (r) < (n — r)2.
Valiant [Val77] showed that this upper bound is essentially tight for a random matrix. First, we give a proof
of the upper bound.

Theorem 1.8 (Simple upper bound). For any field F, matriz A € F"*™, and integer 0 < r < n, we have
that
RE(r) < (n—7)%.

Proof of Theorem 1.8. 1f rank(A) < r, then RE(r) = 0 < (n — r)2. Thus, it suffices to focus on the case
where there is an r x r full-rank submatrix B € F"™*" of A. Without loss of generality, assume that B is

located in the top left corner of A:
A= , 1.9
(Azl A22> (1.9)

where A1y € F7X(=7) Ay € Fv=1)x7 Ayy € F(n=7)X(n=7) T order to prove that RE(r) < (n—7)?%, we will
show that it is possible to change the entries in Ayy € F*=7)*("=7) and reduce the rank of A to r. Since
B has full rank, each row in Ay is a unique linear combination of the rows in B. Thus, we can change the
entries in Asp according to these linear combinations so that each row in A is now a linear combination of
the first r rows, 4.e., the rank of the modified matrix is at most r. 2

Note that the above algorithm only modifies the entries of Agy € F("=7)*("=") Thus, at most (n — r)?

many entries in A are changed, and RY (r) < (n —r)%. O

We will now prove that almost all matrices have rigidity (n — ).

Theorem 1.10 (Valiant’s lower bounds [Val77]). For any field F,

o if F is infinite, then for all 0 < r < n there exists a matriz M € F™*™ of rigidity
Ru(r) = (n—r)*;
e if F is finite, then for all0 <r < n — Q(y/n) there exists a matriz M € F"*™ of rigidity
RE, (1) = Q ((n—7)?*/logn) .

Proof of Theorem 1.10. Let M, s = {A € F**" . RE (r) < s} be the set of all matrices of r-rigidity at most
s. We will show that the n? elements of matrices from M,. ¢ lie in the union of images of a few rational maps

from Fr°+s—(n=1)" o F*, Intuitively, since for s < (n — r)? these images cover only a negligible fraction of
all matrices in F™*™ we will have that “most” of the matrices are rigid.

For every matrix M € M, , there exists an s-sparse matrix S € F*"*™ and a low-rank matrix L €
Fr*™ rank(L) = k < r such that M = S + L. After one of at most (Z)2 permutations of rows and columus,
we have the first k£ rows and columns of L linearly independent. The same permutations of rows and columns

applied to M, give us a matrix of the form
My Mo
, 1.11
<M21 Moy (1.11)

where My, € FF*F My, € FF*(=k) Mo, € Fv=k)xk £, e F(v=F)x(n=k) Moreover, for at least one out of

2
(") choices of s entries of the matrix, we have that a change in those entries makes rank(Mi;) = rank(M).
Similarly to Theorem 1.8, this implies that all entries of Moy are then rational maps of the entries in

2F0rmally, we set Aoy = A21371A124
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M1, M1a, May. That is, the n? entries of any matrix M € M, 4 lie in the union of at most (’:)2 . (":) rational
maps from Fstn°—(n=r)?* ¢ Fr*,

When F is infinite and s < (n—7)?, every matrix in M, ; is in the union of finitely many images of rational
functions from F"°~1 to F"°. Since n? rational functions of n — 1 variables are algebraically dependent (see,
e.g., [For92]), a finite union of such images is the set of roots of a non-zero polynomial. This implies that
some matrices from F**™ do not belong to M, ;.

When |F| = ¢ < oo is finite, each M € M, , is uniquely specified by one out of (f)z permutations, one of

2
("S ) choices of s elements, values of those s elements, and values of the entries in My, M1, Mo1. Thus, the
size of M, is bounded from above by

2
(:’) . <T;2> . qs . qngf(nf'r‘)2 < 22n+2slogn . qn2+sf(n7'r)2’

which is at most o(¢"") for every s < (n — r)?/Q(log, n) and r = n — Q(y/n). O

Note that the proof of the {2 ((n — r)z) lower bound in Theorem 1.10 does not provide a description
of a rigid matrix, it merely proves its existence. This brings us to a discussion on explicitness of matrix
constructions.

1.5 On explicitness

In this section we will see two constructions of very rigid matrices. The main drawback of these constructions
is that we do not know a polynomial time algorithm outputting the entries of these matrices.

First we show that a matrix consisting of algebraically independent elements has maximal rigidity. (One
simple way to construct n? algebraically independent elements is given by Lindemann-Weierstrass Theorem.)

Lemma 1.12. Let M € R™*" be a matriz where all n? elements are algebraically independent over Q. Then
for every 0 < r <n,
RE ()= (n—71)%.

Proof. Let s = (n —r)? — 1. Assume, for the sake of contradiction, that R%;(r) < s. Then there exists an
s-sparse matrix S, such that rank(M + S) < r. Similarly to Theorem 1.10, the n? entries of M are rational
functions of the s non-zero entries of S and at most n? — (n — r)? entries of M. Therefore, polymonials of
at most s + n? — (n — r)2 < n? elements generate all n? entries of M, which contradicts the assumption
on algebraic independence of the elements of M. This implies that RS, (r) > (n — 7)2. On the other hand,
Theorem 1.8 gives us that Ry, (r) < (n —r)2. O

While the construction of Lemma 1.12 has optimal rigidity, and each entry of such a matrix may have a
very succinct mathematical description, there is no efficient algorithm outputting all digits of these entries.
Thus, we will require that explicit constructions of matrices have polynomial-time algorithms outputting
their entries.

Another non-explicit construction of rigid matrices is via an exponential-time algorithm. Suppose that
we have a fixed finite field F of size [F| = ¢. Then there is a trivial algorithm which runs in time ¢°™) and
outputs a rigid matrix. Let us fixan 0 <r <n—Q(y/n), and s = Q ((n — r)?/logn). In time ¢°™) one can
go over all pairs of matrices M, S € F*"*™. For every such pair, the algorithm checks whether S is s-sparse
and rank(M + S) < r. When the algorithm finds an M for which there is no S with the above conditions,
it outputs M as a rigid matrix and halts. (Theorem 1.10 guarantees existence of such a rigid matrix.)

When the field F is infinite, an algorithm cannot enumerate all matrices. But even in this case it is
possible to construct a rigid matrix in time 20") n order to prove this, we will first show that there exists
a rigid matrix with all entries from {0,1}. This will give us a way to enumerate all such matrices in time
20(n*) Next, we will show that given such a matrix, one can check its rigidity in time 20(”2), which will
finish the proof.

Lecture 3
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Theorem 1.13 (|[PR94]). For all large enough n, there exists a matriz M € {0,1}"*™ such that

2
b (56) 2 106 -

Proof. Let r = %5, and assume that all matrices M € {0,1}™*" have rigidity R}, (r) < s. We will show the

n®

o5+ Each such matrix M can be written as

lower bound of s >

where S € R"*"™ is s-sparse, L1 € R™*" and Ly € R"*". There are (i) ways to choose the set of non-zero
entries in S, let us fix one such set I'. From Equation 1.14, each entry of M is a degree-2 polynomial of the
entries of Ly, Ly and I'. In particular, there exist a set of n? degree-2 polynomials { f};—}i,je[n] with variables
being the entries of L1, Ly, I" such that M;; = };(Ll, Ly, 5).

For a set of t-variate polynomials F' = {fi;}i jcn), we define its set of zero-patterns as the set of all
sequences of zero-non-zero outputs of functions from F':

Z(F)={M € {0,1}"*": Jz e R" Vi,j € [n], M;; = 14, (2)#0}

We will use the following lemma which asserts that for a set F' of low-degree polynomials, Z(F') is small.

Lemma 1.15 ([RBGO1]). If F' = {fij}ijein is a collection of t-variate polynomials of degree at most d,

then
t+ dn2>

2= ("]

Proof of Lemma 1.15. Let m = n? be the number of polynomials, and let N = |Z(F)|. Let z1,22,..., 2N €
R! be a set of points witnessing the N distinct zero-patterns of F. For an i € [N], let S; C [m] be the set of
(indices of) polynomials from F' which are not zeros at the point x;. For every i € [N], define the following

polynomial
gi= 1] -
kES;

Note that g;(z;) = 0 if and only if there exists fi € S; \ S;. Therefore, we have g;(z;) = 0 if and only if
S € 5.

Now we prove that all {g;};cn] are linearly independent. Suppose, to the contrary, that there exist
ai,as,...,any € R such that Zie[N] a;g; = 0, and at least one a; # 0. Let

i* = argmin |S;].

i€[N], a;#£0
We have that a;«g;«(x;+) # 0 and ZiE[N] a;g;(x;+) = 0. Due to the minimality of S;«, for every a; # 0,
Si; € Si+. This implies that a;g;(z;+) = 0 for all ¢ # i*, and, thus, Zie[N] a;g;(x;+) # 0, which leads to a
contradiction.

Finally, since the degree of each g; is at most dm, and all g; are linearly independent, N is bounded
from above by the dimension of the space spanned by t-variate polynomials of degree at most dm. Thus,
N S (t+tdm)' O

Recall that from Equation 1.14, all matrices M € {0,1}"*™ can be described by { f};}i’je[n] for some

I e (["]j["]), where each polynomial has degree at most 2 and depends on 2rn + s variables. Now, from
Lemma 1.15 with t = 2rn + s and d = 2, we have that

2 2
(2rn+s+2n>.(n )22712. (1.16)

2rn+ s <s
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n

Assume, for the sake of contradiction, that for some r < 555 we have s < %. We have that 2rn+s < ’g—;.
Now, the left-hand side of Equation 1.16 can be bounded from above as follows:

2rn + s + 2n? n? 10510"2 n? n? 02 n?
: < x| a2 | < (101e) 50 - (100e)100 < 272
2rn+s <s n? < n2

50 — 100

which contradicts Equation 1.16. Thus, we conclude that for any » < 555, there exists a matrix M € {0, 1}"*"

such that RY,(r) > %. O
Now we show that one can check whether a given matrix M € {0,1}™*™ is rigid in time 20(*) 3

Theorem 1.17. Let M € {0,1}"*", and r and s be non-negative integers. Then one can decide whether
RHJ{VI(T) > s in time 20(”2).

Proof. Note that RE,(r) < s if and only if M = S + Ly Ly for s-sparse S and L; € R"*" Ly € R™". For
any choice of non-zero entries of S, we have that the entries of M are degree-2 polynomials of ¢ = 2nr + s
variables with {0, 1}-coefficients. It is known that deciding whether such a system of polynomial equations
has a real solution can be solved in time 2°("") (see, e.g., Proposition 13.19 in [BPRO07]). Since there are

("j) < 27" choices of s non-zero entries, we have that the total running time of the algorithm is 20 O

This way we have a set of 27" matrices such that at least one of them is rigid, and rigidity of each matrix
can be checked in time 20("*). This gives us a 20(n*) _time algorithm for constructing a rigid matrix over the
reals.

Although the above algorithms construct matrices of high rigidity, their running time is 29(n*) | We define
explicit constructions of matrices as matrices that have algorithms outputting all their entries in polynomial
time.

1.6 Summary

In Theorem 1.8 we showed that for every field F, matrix M € F**" and integer 0 < r < n, RE,(r) < (n—r)2.
Below we summarize the non-explicit lower bounds on rigidity presented in this chapter.

rigidity field running time reference

(71’0;;22 any finite field existence Theorem 1.10

(n—r)? any infinite field existence Theorem 1.10

(n—1r)? R algebraically inde- Lemma 1.12
pendent entries

(71’();22 any fixed finite field 20(n?) section 1.5

(n—r)? R 20(n?) Theorem 1.13,

Theorem 1.17

Table 1.1: Summary of non-explicit lower bounds.

3For more efficient algorithms for the case of low rigidity parameters see [FLMT18]. A PSPACE-algorithm for this problem
follows immediately from the fact that existential theory of the reals lies in PSPACE [Can88].
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1.7 Notes

Rigidity was introduced as a means to study circuit complexity by Valiant [Val77] and Grigoriev [Gri76].
An excellent presentation of the known lower bounds on rigidity over large fields can be found in the
book of Lokam [Lok09]. The books of Jukna [Juk12] and Jukna and Sergeev [JS13] include many appli-
cations of matrix rigidity to circuit complexity. Earlier surveys on rigidity are due to Codenotti [Cod00]
and Cheraghchi [Che05]. The tight upper bound of Theorem 1.8, and the non-constructive lower bounds
of Theorem 1.10 and Theorem 1.13 were proven by Valiant [Val77], and Pudlak and R6dl [PR94]. The proof
of Theorem 1.2 was first given by Midrijanis [Mid05].
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