Fall 2020	Homework 2	Sasha Golovnev
Matrix Rigidity	Due $11/18/2020$	Georgetown University

Problem 1 (Existence of Optimally Rigid Matrices). Recall that in Theorem 1.10 we used the probabilistic method (counting argument) to prove that for all sufficiently large n there exist matrices $M \in \mathbb{F}_2^{n \times n}$ that have rigidity

$$\mathcal{R}_M^{\mathbb{F}_2}(\varepsilon n) \ge \Omega(n^2/\log n)$$
.

In this exercise we will prove that there are even matrices $M \in \mathbb{F}_2^{n \times n}$ of rigidity

$$\mathcal{R}_M^{\mathbb{F}_2}(\varepsilon n) \ge \Omega(n^2)$$

- Use an upper bound for binomial coefficients to improve the bound in Corollary 3.26 for linear rank $r = \Theta(n)$ and maximal sparsity $s = \Theta(n)$ from $2^{O(n^2 \log n)}$ to $2^{O(n^2)}$.
- Use this improved bound and the argument from the proof of Theorem 3.22 to conclude that a random $\Omega(n)$ -regularly sparse matrix has rigidity $\Omega(n^2)$ for some rank parameter $r = \Omega(n)$.

Problem 2 (Rigidity in **E**). In class we showed that a rigid Hankel matrix [GT16] can be constructed in the complexity class \mathbf{E}^{NP} . In this exercise we show that it can actually be constructed in **E**.

- Examine the proof of Theorem 3.13 and conclude that it suffices to find a Hankel matrix whose k^2 submatrices have rigidity $\mathcal{R}_A(r) \ge \Omega\left(\frac{n}{\log n}\right)$.
- Give a deterministic algorithm running in time $2^{O(n)}$ that checks whether $\mathcal{R}_A^{\mathbb{F}_2}(r) \ge \Omega\left(\frac{n}{\log n}\right)$ for any matrix $A \in \mathbb{F}_2^{m \times m}$ and any $r, m \le n$.

Problem 3 (Polynomial Method). In class we proved that the number n of points in d dimensions whose pairwise (Euclidean) distances take only two values is upper bounded by $n \leq O(d^2)$.

- Use the same proof strategy to generalize this upper bound to sets with three pairwise distances. Let $x_1, \ldots, x_n \in \mathbb{R}^d$, and there exist numbers $d_1, d_2, d_3 > 0$ such that all pairwise distances $||x_i x_j||^2 \in \{d_1, d_2, d_3\}$ for $i, j \in [n]$. Prove that $n \leq \operatorname{poly}(d)$. You do not need to optimize the upper bound, it would be sufficient to prove an upper bound of, say, $n \leq O(d^6)$.
- Construct a set $x_1, \ldots, x_n \in \mathbb{R}^d$ such that all pairwise distances take three values and $n \ge \Omega(d^3)$.
- *Optional.* Can you generalize the lower and upper bound to sets with k pairwise distances for arbitrarily large constant k?