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Chapter 1

Introduction

Lecture 11.1 Definitions and examples
One of the main questions in computational complexity is that of proving lower bounds on the size of
Boolean circuits computing explicitly given functions. While most Boolean functions of n inputs require
circuits of size 2n/n [Sha49a, Lup59a], we can only prove small linear lower bounds for explicitly defined
functions [LR01, IM02, Blu83, DK11, FGHK16]. 1

The same question remains open for linear circuits computing linear Boolean functions. Since any linear
function with one output can be computed by a circuit of size at most n, we study linear functions with n
inputs and n outputs. A random linear map with n outputs requires circuits of size n2/ log n [Lup56], but
the best known lower bound for an explicit linear map is only 3n− o(n) [Cha94a].

The notion of matrix rigidity was introduced by Valiant [Val77] as a tool for proving lower bounds against
linear circuits. (A related notion of separability was introduced by Grigoriev [Gri76].)

We will use the following notation. A matrix A is called s-sparse, if the number of non-zero entries in A
is at most s. We will use In, 0n and Jn to denote the identity matrix, zero matrix, and all-ones matrix of
size n× n. For a matrix A ∈ Fn×n, by ‖A‖0 we denote the number of non-zero entries in A.
Definition 1.1 (Rigidity). Let F be a field, A ∈ Fn×n be a matrix, and 0 ≤ r ≤ n. The rigidity of A over F,
denoted by RF

A(r), is the Hamming distance between A and the set of matrices of rank at most r. Formally,

RF
A(r) := min

rank(A+C)≤r
‖C‖0 .

In other words, a matrix A has rigidity RF
A(r) ≥ s if and only if A ∈ Fn×n cannot be written as a sum

A = S + L ,

where S ∈ Fn×n is (s− 1)-sparse matrix, and L ∈ Fn×n is low-rank: rank(L) ≤ r.
Valiant [Val77] proved that any linear map A ∈ Fn×n computed by a linear circuit (over a field F) of depth

O(log n) and size o(n log log n) has rigidity at most RF
A(εn) ≤ n1+δ for every constant ε, δ > 0. Therefore,

an explicit matrix of higher rigidity would give us a super-linear lower bound against linear circuits of
logarithmic depth. Despite more than 40 years of research, the problem of proving super-linear lower bounds
for such circuits remains open.

Let us now see the rigidity of a few specific matrices.

• If A ∈ Fn×n has rank rank(A) = k over the field F, then RF
A(r) = 0 for every r ≥ k. Indeed, A can

be written as a sum of A and 0n, where rank(A) ≤ r and 0n is 0-sparse. Similarly, an s-sparse matrix
A ∈ Fn×n has rigidity RF

A(r) ≤ s for any value of r.
1Here by explicit functions we mean functions computable in time polynomial in n. We will later discuss the notion of

explicitness in greater detail.
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• For any 0 ≤ r ≤ n, RF
In

(r) = n− r. Indeed, if we change n− r ones of In to zeros, then the resulting
matrix has rank r, which implies that RF

In
(r) ≤ n−r. On the other hand, for any (n−r)-sparse matrix

B, from subadditivity of rank,

rank(In +B) ≥ rank(In)− rank(B) ≥ n− (n− r) = r ,

which gives us that RF
In

(r) ≥ n− r.

• Let n be a multiple of 2r, and let Mn ∈ Fn×n be a matrix consisting of matrices I2r stacked together
side by side:

Mn =

I2r · · · I2r
...

. . .
...

I2r · · · I2r

 .

We will show that this matrix has rigidity RF
A(r) = n2

4r .

Theorem 1.2 ([Mid05]). For any field F, and any n divisible by 1 ≤ 2r ≤ n,

RF
Mn

(r) =
n2

4r
.

Proof of Theorem 1.2. Mn consists of n2

4r2 copies of the identity matrix I2r. In order to drop the rank
of A to r, the rank of each copy of I2r must be dropped to r. From the previous example we know that
in order to decrease the rank of I2r to r, one needs to change at least r elements. Thus, n2

4r2 · r = n2

4r

entries of Mn must be changed. Note that this bounds is tight, i.e., RF
Mn

(r) = n2

4r .

The bound of Theorem 1.2 easily generalizes to all values r ≤ n/2 with a loss of a multiplicative factor
of 2. This theorem was proven by Midrijānis [Mid05], and it gives a simple matrix with rigidityRF

Mn
(r) ≥ n2

8r .
We will see later that there exist matrices with much higher rigidity Ω̃

(
(n− r)2

)
. Embarrassingly, the

best known lower bound for an explicit matrix improves on the n2

8r bound only by a logarithmic factor.

1.2 Circuit Complexity
A circuit corresponds to a simple straight line program where every instruction performs a binary operation
on two operands, each of which is either an input or the result of a previous instruction. The structure
of this program is extremely simple: no loops, no conditional statements. Still, we know no functions in
P (or even NP, or even ENP) that requires even 3.1n binary instructions (“size”) to compute on inputs of
length n. This is in sharp contrast with the fact that it is easy to non-constructively find such functions:
simple counting arguments show a random function on n variables has circuit size Ω(2n/n) with probability
1− o(1) [Sha49b, Lup59b].

For small-depth circuits we know several strong lower bounds. (Note that when working with circuits
of constant depth, we do not pose bounds on the fan-ins of the gates.) Depth-2 circuits (after a simple
normalization) are just CNFs or DNFs. It is easy to see that the parity function ⊕n of n inputs requires
CNFs and DNFs of size Ω(2n). For depth-d circuits, we know a lower bound of 2Ω(n(1/(d−1))) [Hås86, HJP93,
PPZ97, Bop97, PPSZ05, MW17]. Thus, for depth d = o(log n/ log log n) we have non-trivial lower bounds
even if the fan-ins of the gates are unbounded. For circuits with fan-in 2, we known functions which cannot
be computed by circuits of depth 1.99 log n [Nec66]. Thus, a problem on the frontier is

Problem 1.3. Prove a lower bound of 10n against circuits of depth 10 log n.
More generally, a lower bound of ω(n) against circuits of depth O(log n).

Super-linear lower bounds are not known even for linear circuits, i.e., circuits consisting of only gates
computing linear combinations of their two inputs. Note that every linear function with one output has a
circuit of size n− 1 (and depth log n). For linear circuits, we consider linear transformations, multi-output
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functions of the form f(x) = Ax where A ∈ Fn×n. For a random matrix A ∈ {0, 1}n×n, the size of the
smallest linear circuit computing Ax is Θ(n2/ log n) [Lup56] with probability 1 − o(1), but for explicitly-
constructed matrices the strongest known lower bound is 3n − o(n) [Cha94b]. This leads us to another
problem on the frontier:

Problem 1.4. Prove a lower bound of ω(n) against linear circuits of depth O(log n).

Formally, Problem 1.3 and Problem 1.4 are incomparable, as in the linear case we study a weaker
computational model (which makes it easier to prove lower bounds), but are limited to proving lower bounds
for a smaller class of problem (which makes it harder to prove lower bounds).

1.3 Circuits and Rigidity
In this section, we will present a seminal result of Valiant [Val77] showing that rigid matrices require log-depth
circuits of super-linear size. We start with the definition of linear circuits.
Definition 1.5 (Linear circuits). Let F be a field and n ∈ N. A circuit C with n inputs and n outputs is a
directed acyclic graph where n vertices have fan-in zero and are labeled by the inputs, all other vertices have
fan-in two and are labeled with affine functions (over F) of their two inputs, n of these vertices are labeled as
outputs. For every fixed input, the value at each node is computed by applying the corresponding functions.
Such a circuit C naturally defines a linear map f : Fn → Fn, and the corresponding matrix A ∈ Fn×n such
that f(x) = Ax.

The depth d(C) of a circuit C is the length of the longest path in the circuit. The size s(C) of C is defined
as the number of vertices in C.

The following theorem shows a connection between lower bounds for linear circuits and matrix rigidity.

Theorem 1.6. Let F be a field, and A ∈ Fn×n be a family of matrices for n ∈ N. If RF
A(εn) > n1+δ for

constant ε, δ > 0, then any O(log n)-depth linear circuit computing x→ Ax must be of size Ω(n · log log n).

The proof of Theorem 1.6 repeatedly uses the following beautiful graph theoretic lemma due to Erdös,
Graham, and Szemerédi [EGS76]: If G is a directed acyclic graph with s edges and of depth d, then there is
a set of s/ log d edges whose removal decreases the depth of G by a factor of two. We will follow the proof
of this lemma from [Vio09].

Lemma 1.7 ([EGS76]). Let G be an acyclic digraph with s edges and of depth d = 2k. There exists a set of
s/ log d edges in G such that after their removal, the longest path in G has length at most d/2.

Proof of Lemma 1.7. For ease of exposition, we follow [Vio09] and define a depth function. Let G = (V,E)
be an acyclic digraph. We say that D : V → {0, 1, . . . , d} is a depth function for G if for any (a, b) ∈ E,
D(a) < D(b). It is not difficult to see that G has depth at most d if and only if there exists a depth function
D : V → {0, 1, . . . , d− 1} for G.

We start with G of depth at most d = 2k, and its depth function D : V → {0, 1, . . . , 2k}. Now, consider
the following partition of E using the depth function D. For each i ∈ [k], define

Ei = {(a, b) ∈ E : the most significant bit where D(a), D(b) differ is the ith bit}.

As {Ei}i∈[k] is a partition of E, by the averaging argument, there exists i∗ ∈ [k] such that

|Ei∗ | ≤
|E|
k
≤ |E|

log d
.

Now, it suffices to show that the depth of G′ = (V,E′), where E′ = E\Ei∗ , is at most 2k−1. This can be
shown by exhibiting a depth function D′ : V → {0, 1, . . . , 2k−1− 1} for G′. The following shows that we can
take D′(v) to be D(v) without the i∗th bit.

Consider an edge (a, b) ∈ E′. Since (a, b) ∈ E, D(a) < D(b). In particular, there exists i ∈ [k] such that
the most significant bit where D(a) and D(b) differ is i. Since (a, b) ∈ E′, the edge (a, b) was not removed,
so i 6= i∗. Therefore, after removing the bit i∗, this bit i is still the most significant bit where D′(a) and
D′(b) differ. This implies that D′(a) < D′(b), and that D′ : V → {0, 1, . . . , 2k−1 − 1} is a depth function
for G′.
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